These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 20568858)

  • 1. The ground state van der Waals potentials of the calcium dimer and calcium rare-gas complexes.
    Yang DD; Li P; Tang KT
    J Chem Phys; 2009 Oct; 131(15):154301. PubMed ID: 20568858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ground state van der Waals potentials of the strontium dimer and strontium rare-gas complexes.
    Yin GP; Li P; Tang KT
    J Chem Phys; 2010 Feb; 132(7):074303. PubMed ID: 20170223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combining rule calculation of the ground state van der Waals potentials of the mercury rare-gas complexes.
    Sheng XW; Li P; Tang KT
    J Chem Phys; 2009 May; 130(17):174310. PubMed ID: 19425779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The van der Waals potential of the magnesium dimer.
    Li P; Xie W; Tang KT
    J Chem Phys; 2010 Aug; 133(8):084308. PubMed ID: 20815570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corresponding states principle for the alkaline earth dimers and the van der Waals potential of Ba2.
    Li P; Ren J; Niu N; Tang KT
    J Phys Chem A; 2011 Jun; 115(25):6927-35. PubMed ID: 21375343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Study of Ground-State Barium-Rare Gas Van der Waals Complexes: Combining Rule Modeling and Ab Initio Calculations.
    Saidi S; Bejaoui M; Berriche H
    ACS Omega; 2024 Jul; 9(30):32407-32417. PubMed ID: 39100324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the bonding in M(n+)-RG complexes and the transport of M(n+) through rare gas (M=Ca, Sr, and Ra; n=1 and 2; and RG=He-Rn).
    Gardner AM; Withers CD; Wright TG; Kaplan KI; Chapman CY; Viehland LA; Lee EP; Breckenridge WH
    J Chem Phys; 2010 Feb; 132(5):054302. PubMed ID: 20136311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A velocity map imaging study of gold-rare gas complexes: Au-Ar, Au-Kr, and Au-Xe.
    Hopkins WS; Woodham AP; Plowright RJ; Wright TG; Mackenzie SR
    J Chem Phys; 2010 Jun; 132(21):214303. PubMed ID: 20528018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids.
    von Lilienfeld OA; Tkatchenko A
    J Chem Phys; 2010 Jun; 132(23):234109. PubMed ID: 20572691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corresponding states principle and van der Waals potentials of Zn2, Cd2, and Hg2.
    Wei LM; Li P; Qiao LW; Tang KT
    J Chem Phys; 2013 Oct; 139(15):154306. PubMed ID: 24160512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jahn-Teller effect in van der Waals complexes; Ar-C6H6 + and Ar-C6D6 +.
    van der Avoird A; Lotrich VF
    J Chem Phys; 2004 Jun; 120(21):10069-83. PubMed ID: 15268029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic characterization of the C2-Ne van der Waals complex.
    Han J; Philen D; Heaven MC
    J Chem Phys; 2006 Feb; 124(5):054314. PubMed ID: 16468876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suitability of double hybrid density functionals and their dispersion-corrected counterparts in producing the potential energy curves for CO2-Rg (Rg: He, Ne, Ar and Kr) systems.
    Seal P; Chakrabarti S
    J Phys Chem A; 2009 Feb; 113(7):1377-83. PubMed ID: 19146440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal rotation in NH4(+)-Rg dimers (Rg = He, Ne, Ar): potential energy surfaces and IR spectra of the nu 3 band.
    Lakin NM; Olkhov RV; Dopfer O
    Faraday Discuss; 2001; (118):455-76; discussion 487-503. PubMed ID: 11605280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations of the Rg-BrCl (Rg=He, Ne, Ar, Kr, Xe) binary van der Waals complexes: ab initio intermolecular potential energy surfaces, vibrational states and predicted pure rotational transition frequencies.
    Li S; Zheng R; Chen SJ; Chen Y; Chen P
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():105-117. PubMed ID: 27888780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical studies of potential energy surface and rotational spectra of Xe-H(2)O van der Waals complex.
    Wang L; Yang M
    J Chem Phys; 2008 Nov; 129(17):174305. PubMed ID: 19045345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic spectroscopy of the 3d Rydberg states of NO-Rg (Rg=Ne,Ar,Kr,Xe) van der Waals complexes.
    Bergeron DE; Musgrave A; Gammon RT; Ayles VL; Silber JA; Wright TG; Wen B; Meyer H
    J Chem Phys; 2006 Jun; 124(21):214302. PubMed ID: 16774402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of Ba(n+)-RG (RG = rare gas) complexes and transport of Ba(n+) through RG (n = 1,2; RG = He-Rn).
    McGuirk MF; Viehland LA; Lee EP; Breckenridge WH; Withers CD; Gardner AM; Plowright RJ; Wright TG
    J Chem Phys; 2009 May; 130(19):194305. PubMed ID: 19466834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective adsorption, bound states, and potential parameters for He, Ne, and Ar interacting with a Cu(110) surface.
    Andersson T; Linde P; Hassel M; Andersson S
    J Chem Phys; 2006 Mar; 124(11):114703. PubMed ID: 16555906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio studies of the Rg-NO(+)(X(1)Σ(+)) van der Waals complexes (Rg = He, Ne, Ar, Kr, and Xe).
    Orek C; Kłos J; Lique F; Bulut N
    J Chem Phys; 2016 May; 144(20):204303. PubMed ID: 27250302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.