These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 20569395)
1. The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Urban M; Mott E; Farley T; Hammond-Kosack K Mol Plant Pathol; 2003 Sep; 4(5):347-59. PubMed ID: 20569395 [TBL] [Abstract][Full Text] [Related]
2. Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue. Cuzick A; Urban M; Hammond-Kosack K New Phytol; 2008; 177(4):990-1000. PubMed ID: 18179606 [TBL] [Abstract][Full Text] [Related]
3. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N; Schäfer W; Bormann J Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226 [TBL] [Abstract][Full Text] [Related]
4. Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum. Urban M; Daniels S; Mott E; Hammond-Kosack K Plant J; 2002 Dec; 32(6):961-73. PubMed ID: 12492838 [TBL] [Abstract][Full Text] [Related]
5. A role for topoisomerase I in Fusarium graminearum and F. culmorum pathogenesis and sporulation. Baldwin TK; Urban M; Brown N; Hammond-Kosack KE Mol Plant Microbe Interact; 2010 May; 23(5):566-77. PubMed ID: 20367465 [TBL] [Abstract][Full Text] [Related]
6. Control of Drakopoulos D; Meca G; Torrijos R; Marty A; Kägi A; Jenny E; Forrer HR; Six J; Vogelgsang S Front Microbiol; 2020; 11():1595. PubMed ID: 32849332 [No Abstract] [Full Text] [Related]
7. Compression tests of Fusarium graminearum ascocarps provide insights into the strength of the perithecial wall and the quantity of ascospores. David RF; Reinisch M; Trail F; Marr LC; Schmale DG Fungal Genet Biol; 2016 Nov; 96():25-32. PubMed ID: 27686515 [TBL] [Abstract][Full Text] [Related]
8. Q-SNARE protein FgSyn8 plays important role in growth, DON production and pathogenicity of Fusarium graminearum. Adnan M; Islam W; Noman A; Hussain A; Anwar M; Khan MU; Akram W; Ashraf MF; Raza MF Microb Pathog; 2020 Mar; 140():103948. PubMed ID: 31874229 [TBL] [Abstract][Full Text] [Related]
9. The Kong X; van Diepeningen AD; van der Lee TAJ; Waalwijk C; Xu J; Xu J; Zhang H; Chen W; Feng J Front Microbiol; 2018; 9():654. PubMed ID: 29755419 [TBL] [Abstract][Full Text] [Related]
10. The Dynamin-Like GTPase FgSey1 Plays a Critical Role in Fungal Development and Virulence in Fusarium graminearum. Chong X; Wang C; Wang Y; Wang Y; Zhang L; Liang Y; Chen L; Zou S; Dong H Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220839 [No Abstract] [Full Text] [Related]
11. Population genetic analysis and trichothecene profiling of Fusarium graminearum from wheat in Uruguay. Pan D; Mionetto A; Calero N; Reynoso MM; Torres A; Bettucci L Genet Mol Res; 2016 Mar; 15(1):15017270. PubMed ID: 26985955 [TBL] [Abstract][Full Text] [Related]
12. The PKR regulatory subunit of protein kinase A (PKA) is involved in the regulation of growth, sexual and asexual development, and pathogenesis in Fusarium graminearum. Li C; Zhang Y; Wang H; Chen L; Zhang J; Sun M; Xu JR; Wang C Mol Plant Pathol; 2018 Apr; 19(4):909-921. PubMed ID: 28665481 [TBL] [Abstract][Full Text] [Related]
13. Aquaporin1 regulates development, secondary metabolism and stress responses in Fusarium graminearum. Ding M; Li J; Fan X; He F; Yu X; Chen L; Zou S; Liang Y; Yu J Curr Genet; 2018 Oct; 64(5):1057-1069. PubMed ID: 29502265 [TBL] [Abstract][Full Text] [Related]
14. R-SNARE FgSec22 is essential for growth, pathogenicity and DON production of Fusarium graminearum. Adnan M; Fang W; Sun P; Zheng Y; Abubakar YS; Zhang J; Lou Y; Zheng W; Lu GD Curr Genet; 2020 Apr; 66(2):421-435. PubMed ID: 31667538 [TBL] [Abstract][Full Text] [Related]
15. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623 [TBL] [Abstract][Full Text] [Related]
16. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Hou Z; Xue C; Peng Y; Katan T; Kistler HC; Xu JR Mol Plant Microbe Interact; 2002 Nov; 15(11):1119-27. PubMed ID: 12423017 [TBL] [Abstract][Full Text] [Related]
17. Recent advances in genes involved in secondary metabolite synthesis, hyphal development, energy metabolism and pathogenicity in Fusarium graminearum (teleomorph Gibberella zeae). Geng Z; Zhu W; Su H; Zhao Y; Zhang KQ; Yang J Biotechnol Adv; 2014; 32(2):390-402. PubMed ID: 24389085 [TBL] [Abstract][Full Text] [Related]
18. Toxigenic capacity and trichothecene production by Fusarium graminearum isolates from Argentina and their relationship with aggressiveness and fungal expansion in the wheat spike. Malbrán I; Mourelos CA; Girotti JR; Balatti PA; Lori GA Phytopathology; 2014 Apr; 104(4):357-64. PubMed ID: 24168045 [TBL] [Abstract][Full Text] [Related]
19. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Jenczmionka NJ; Maier FJ; Lösch AP; Schäfer W Curr Genet; 2003 May; 43(2):87-95. PubMed ID: 12695848 [TBL] [Abstract][Full Text] [Related]
20. Major Facilitator Superfamily Transporter Gene Chen Q; Lei L; Liu C; Zhang Y; Xu Q; Zhu J; Guo Z; Wang Y; Li Q; Li Y; Kong L; Jiang Y; Lan X; Wang J; Jiang Q; Chen G; Ma J; Wei Y; Zheng Y; Qi P Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]