These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20570437)

  • 21. Removal of trivalent chromium from water using low-cost natural diatomite.
    Gürü M; Venedik D; Murathan A
    J Hazard Mater; 2008 Dec; 160(2-3):318-23. PubMed ID: 18417281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic and equilibrium studies of phenol adsorption by natural and modified forms of the clinoptilolite.
    Sprynskyy M; Ligor T; Lebedynets M; Buszewski B
    J Hazard Mater; 2009 Sep; 169(1-3):847-54. PubMed ID: 19423221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite.
    Kuleyin A
    J Hazard Mater; 2007 Jun; 144(1-2):307-15. PubMed ID: 17112660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zeolite-templated microporous carbon as a superior adsorbent for removal of monoaromatic compounds from aqueous solution.
    Ji L; Liu F; Xu Z; Zheng S; Zhu D
    Environ Sci Technol; 2009 Oct; 43(20):7870-6. PubMed ID: 19921907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic aspects of nitrogen-heterocyclic compound adsorption on bamboo charcoal.
    Liao P; Yuan S; Zhang W; Tong M; Wang K
    J Colloid Interface Sci; 2012 Sep; 382(1):74-81. PubMed ID: 22742990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review.
    Lin SH; Juang RS
    J Environ Manage; 2009 Mar; 90(3):1336-49. PubMed ID: 18995949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent--Kinetics and isotherm analysis.
    Radhika M; Palanivelu K
    J Hazard Mater; 2006 Nov; 138(1):116-24. PubMed ID: 16806675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part II. Models with more than two parameters.
    Hamdaoui O; Naffrechoux E
    J Hazard Mater; 2007 Aug; 147(1-2):401-11. PubMed ID: 17289259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan-calcium alginate blended beads.
    Nadavala SK; Swayampakula K; Boddu VM; Abburi K
    J Hazard Mater; 2009 Feb; 162(1):482-9. PubMed ID: 18573601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions.
    Duc M; Lefevre G; Fedoroff M; Jeanjean J; Rouchaud JC; Monteil-Rivera F; Dumonceau J; Milonjic S
    J Environ Radioact; 2003; 70(1-2):61-72. PubMed ID: 12915060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of chromium Cr(VI) by low-cost chemically activated carbon materials from water.
    Yue Z; Bender SE; Wang J; Economy J
    J Hazard Mater; 2009 Jul; 166(1):74-8. PubMed ID: 19091466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity.
    Pastrana-Martínez LM; López-Ramón MV; Fontecha-Cámara MA; Moreno-Castilla C
    Water Res; 2010 Feb; 44(3):879-85. PubMed ID: 19822344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption equilibrium of phenol onto chemically modified activated carbon F400.
    Cañizares P; Carmona M; Baraza O; Delgado A; Rodrigo MA
    J Hazard Mater; 2006 Apr; 131(1-3):243-8. PubMed ID: 16257115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption kinetics of phenol and 3-nitrophenol from aqueous solutions on conventional and novel carbons.
    Ioannou Z; Simitzis J
    J Hazard Mater; 2009 Nov; 171(1-3):954-64. PubMed ID: 19625123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite.
    Huang J; Wang X; Jin Q; Liu Y; Wang Y
    J Environ Manage; 2007 Jul; 84(2):229-36. PubMed ID: 16859824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: sorption mechanism elucidation.
    Venkata Mohan S; Ramanaiah SV; Rajkumar B; Sarma PN
    J Hazard Mater; 2007 Mar; 141(3):465-74. PubMed ID: 16920254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and characterization of polar polymeric adsorbents with high surface area for the removal of phenol from water.
    Zeng X; Yu T; Wang P; Yuan R; Wen Q; Fan Y; Wang C; Shi R
    J Hazard Mater; 2010 May; 177(1-3):773-80. PubMed ID: 20083347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.
    Altenor S; Carene B; Emmanuel E; Lambert J; Ehrhardt JJ; Gaspard S
    J Hazard Mater; 2009 Jun; 165(1-3):1029-39. PubMed ID: 19118948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.