BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20571150)

  • 1. Global climate change and tree nutrition: effects of elevated CO2 and temperature.
    Lukac M; Calfapietra C; Lagomarsino A; Loreto F
    Tree Physiol; 2010 Sep; 30(9):1209-20. PubMed ID: 20571150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Future carbon balance of China's forests under climate change and increasing CO2.
    Ju WM; Chen JM; Harvey D; Wang S
    J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen nutrition of poplar trees.
    Rennenberg H; Wildhagen H; Ehlting B
    Plant Biol (Stuttg); 2010 Mar; 12(2):275-91. PubMed ID: 20398235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global climate change and tree nutrition: influence of water availability.
    Kreuzwieser J; Gessler A
    Tree Physiol; 2010 Sep; 30(9):1221-34. PubMed ID: 20581013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of elevated atmospheric CO(2) on forest trees and forest ecosystems: knowledge gaps.
    Karnosky DF
    Environ Int; 2003 Jun; 29(2-3):161-9. PubMed ID: 12676204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive effects of solar UV radiation and climate change on biogeochemical cycling.
    Zepp RG; Erickson DJ; Paul ND; Sulzberger B
    Photochem Photobiol Sci; 2007 Mar; 6(3):286-300. PubMed ID: 17344963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the use of modelling for projections of climate change impacts on crops and pastures.
    Soussana JF; Graux AI; Tubiello FN
    J Exp Bot; 2010 May; 61(8):2217-28. PubMed ID: 20410317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The space-time continuum: the effects of elevated CO2 and temperature on trees and the importance of scaling.
    Way DA; Oren R; Kroner Y
    Plant Cell Environ; 2015 Jun; 38(6):991-1007. PubMed ID: 25737035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chapter 1. Impacts of the oceans on climate change.
    Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R
    Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An imperative need for global change research in tropical forests.
    Zhou X; Fu Y; Zhou L; Li B; Luo Y
    Tree Physiol; 2013 Sep; 33(9):903-12. PubMed ID: 24128847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges in elevated CO2 experiments on forests.
    ; Calfapietra C; Ainsworth EA; Beier C; De Angelis P; Ellsworth DS; Godbold DL; Hendrey GR; Hickler T; Hoosbeek MR; Karnosky DF; King J; Körner C; Leakey AD; Lewin KF; Liberloo M; Long SP; Lukac M; Matyssek R; Miglietta F; Nagy J; Norby RJ; Oren R; Percy KE; Rogers A; Mugnozza GS; Stitt M; Taylor G; Ceulemans R
    Trends Plant Sci; 2010 Jan; 15(1):5-10. PubMed ID: 19955012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate-driven trends in contemporary ocean productivity.
    Behrenfeld MJ; O'Malley RT; Siegel DA; McClain CR; Sarmiento JL; Feldman GC; Milligan AJ; Falkowski PG; Letelier RM; Boss ES
    Nature; 2006 Dec; 444(7120):752-5. PubMed ID: 17151666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A whole-tree chamber system for examining tree-level physiological responses of field-grown trees to environmental variation and climate change.
    Medhurst J; Parsby J; Linder S; Wallin G; Ceschia E; Slaney M
    Plant Cell Environ; 2006 Sep; 29(9):1853-69. PubMed ID: 16913874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the impact of nitrogen deposition, climate change and nutrient limitations on tree carbon sequestration in Europe for the period 1900-2050.
    de Vries W; Posch M
    Environ Pollut; 2011 Oct; 159(10):2289-99. PubMed ID: 21163561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests.
    Arneth A; Schurgers G; Hickler T; Miller PA
    Plant Biol (Stuttg); 2008 Jan; 10(1):150-62. PubMed ID: 17682966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term acclimation of plants to elevated CO2 and its interaction with stresses.
    Tuba Z; Lichtenthaler HK
    Ann N Y Acad Sci; 2007 Oct; 1113():135-46. PubMed ID: 17978281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fire as the dominant driver of central Canadian boreal forest carbon balance.
    Bond-Lamberty B; Peckham SD; Ahl DE; Gower ST
    Nature; 2007 Nov; 450(7166):89-92. PubMed ID: 17972883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change effects on beneficial plant-microorganism interactions.
    Compant S; van der Heijden MG; Sessitsch A
    FEMS Microbiol Ecol; 2010 Aug; 73(2):197-214. PubMed ID: 20528987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grassland responses to global environmental changes suppressed by elevated CO2.
    Shaw MR; Zavaleta ES; Chiariello NR; Cleland EE; Mooney HA; Field CB
    Science; 2002 Dec; 298(5600):1987-90. PubMed ID: 12471257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long series relationships between global interannual CO2 increment and climate: evidence for stability and change in role of the tropical and boreal-temperate zones.
    Adams JM; Piovesan G
    Chemosphere; 2005 Jun; 59(11):1595-612. PubMed ID: 15878607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.