These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 20571150)
1. Global climate change and tree nutrition: effects of elevated CO2 and temperature. Lukac M; Calfapietra C; Lagomarsino A; Loreto F Tree Physiol; 2010 Sep; 30(9):1209-20. PubMed ID: 20571150 [TBL] [Abstract][Full Text] [Related]
2. Future carbon balance of China's forests under climate change and increasing CO2. Ju WM; Chen JM; Harvey D; Wang S J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919 [TBL] [Abstract][Full Text] [Related]
4. Global climate change and tree nutrition: influence of water availability. Kreuzwieser J; Gessler A Tree Physiol; 2010 Sep; 30(9):1221-34. PubMed ID: 20581013 [TBL] [Abstract][Full Text] [Related]
5. Impacts of elevated atmospheric CO(2) on forest trees and forest ecosystems: knowledge gaps. Karnosky DF Environ Int; 2003 Jun; 29(2-3):161-9. PubMed ID: 12676204 [TBL] [Abstract][Full Text] [Related]
6. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Zepp RG; Erickson DJ; Paul ND; Sulzberger B Photochem Photobiol Sci; 2007 Mar; 6(3):286-300. PubMed ID: 17344963 [TBL] [Abstract][Full Text] [Related]
7. Improving the use of modelling for projections of climate change impacts on crops and pastures. Soussana JF; Graux AI; Tubiello FN J Exp Bot; 2010 May; 61(8):2217-28. PubMed ID: 20410317 [TBL] [Abstract][Full Text] [Related]
8. The space-time continuum: the effects of elevated CO2 and temperature on trees and the importance of scaling. Way DA; Oren R; Kroner Y Plant Cell Environ; 2015 Jun; 38(6):991-1007. PubMed ID: 25737035 [TBL] [Abstract][Full Text] [Related]
9. Chapter 1. Impacts of the oceans on climate change. Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974 [TBL] [Abstract][Full Text] [Related]
10. An imperative need for global change research in tropical forests. Zhou X; Fu Y; Zhou L; Li B; Luo Y Tree Physiol; 2013 Sep; 33(9):903-12. PubMed ID: 24128847 [TBL] [Abstract][Full Text] [Related]
11. Challenges in elevated CO2 experiments on forests. ; Calfapietra C; Ainsworth EA; Beier C; De Angelis P; Ellsworth DS; Godbold DL; Hendrey GR; Hickler T; Hoosbeek MR; Karnosky DF; King J; Körner C; Leakey AD; Lewin KF; Liberloo M; Long SP; Lukac M; Matyssek R; Miglietta F; Nagy J; Norby RJ; Oren R; Percy KE; Rogers A; Mugnozza GS; Stitt M; Taylor G; Ceulemans R Trends Plant Sci; 2010 Jan; 15(1):5-10. PubMed ID: 19955012 [TBL] [Abstract][Full Text] [Related]
12. Climate-driven trends in contemporary ocean productivity. Behrenfeld MJ; O'Malley RT; Siegel DA; McClain CR; Sarmiento JL; Feldman GC; Milligan AJ; Falkowski PG; Letelier RM; Boss ES Nature; 2006 Dec; 444(7120):752-5. PubMed ID: 17151666 [TBL] [Abstract][Full Text] [Related]
13. A whole-tree chamber system for examining tree-level physiological responses of field-grown trees to environmental variation and climate change. Medhurst J; Parsby J; Linder S; Wallin G; Ceschia E; Slaney M Plant Cell Environ; 2006 Sep; 29(9):1853-69. PubMed ID: 16913874 [TBL] [Abstract][Full Text] [Related]
14. Modelling the impact of nitrogen deposition, climate change and nutrient limitations on tree carbon sequestration in Europe for the period 1900-2050. de Vries W; Posch M Environ Pollut; 2011 Oct; 159(10):2289-99. PubMed ID: 21163561 [TBL] [Abstract][Full Text] [Related]
15. Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests. Arneth A; Schurgers G; Hickler T; Miller PA Plant Biol (Stuttg); 2008 Jan; 10(1):150-62. PubMed ID: 17682966 [TBL] [Abstract][Full Text] [Related]
16. Long-term acclimation of plants to elevated CO2 and its interaction with stresses. Tuba Z; Lichtenthaler HK Ann N Y Acad Sci; 2007 Oct; 1113():135-46. PubMed ID: 17978281 [TBL] [Abstract][Full Text] [Related]
17. Fire as the dominant driver of central Canadian boreal forest carbon balance. Bond-Lamberty B; Peckham SD; Ahl DE; Gower ST Nature; 2007 Nov; 450(7166):89-92. PubMed ID: 17972883 [TBL] [Abstract][Full Text] [Related]
18. Climate change effects on beneficial plant-microorganism interactions. Compant S; van der Heijden MG; Sessitsch A FEMS Microbiol Ecol; 2010 Aug; 73(2):197-214. PubMed ID: 20528987 [TBL] [Abstract][Full Text] [Related]
19. Grassland responses to global environmental changes suppressed by elevated CO2. Shaw MR; Zavaleta ES; Chiariello NR; Cleland EE; Mooney HA; Field CB Science; 2002 Dec; 298(5600):1987-90. PubMed ID: 12471257 [TBL] [Abstract][Full Text] [Related]
20. Long series relationships between global interannual CO2 increment and climate: evidence for stability and change in role of the tropical and boreal-temperate zones. Adams JM; Piovesan G Chemosphere; 2005 Jun; 59(11):1595-612. PubMed ID: 15878607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]