These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 20571230)
1. Slow flow of passive neutrophils and sequestered nucleus into micropipette. Kaleridis V; Athanassiou G; Deligianni D; Missirlis Y Clin Hemorheol Microcirc; 2010; 45(1):53-65. PubMed ID: 20571230 [TBL] [Abstract][Full Text] [Related]
2. Passive mechanical behavior of human neutrophils: power-law fluid. Tsai MA; Frank RS; Waugh RE Biophys J; 1993 Nov; 65(5):2078-88. PubMed ID: 8298037 [TBL] [Abstract][Full Text] [Related]
3. Simulation of neutrophil deformation and transport in capillaries using newtonian and viscoelastic drop models. Zhou C; Yue P; Feng JJ Ann Biomed Eng; 2007 May; 35(5):766-80. PubMed ID: 17380390 [TBL] [Abstract][Full Text] [Related]
4. Viscoelastic properties of leukocytes. Chien S; Schmid-Schönbein GW; Sung KL; Schmalzer EA; Skalak R Kroc Found Ser; 1984; 16():19-51. PubMed ID: 6371192 [TBL] [Abstract][Full Text] [Related]
5. Passive mechanical behavior of human neutrophils: effect of cytochalasin B. Tsai MA; Frank RS; Waugh RE Biophys J; 1994 Jun; 66(6):2166-72. PubMed ID: 8075350 [TBL] [Abstract][Full Text] [Related]
7. Deformability and filterability of white blood cell subpopulations. Evaluation of these parameters in the cell line HL-60 and in type II diabetes mellitus. Athanassiou G; Matsouka P; Kaleridis V; Missirlis Y Clin Hemorheol Microcirc; 2000; 22(1):35-43. PubMed ID: 10711820 [TBL] [Abstract][Full Text] [Related]
8. The mechanics of neutrophils: synthetic modeling of three experiments. Herant M; Marganski WA; Dembo M Biophys J; 2003 May; 84(5):3389-413. PubMed ID: 12719267 [TBL] [Abstract][Full Text] [Related]
9. [Changes of the deformability of neutrophil and the influence of anisodamine on neutrophil deformability during endotoxin-induced acute lung injury in rats]. Xu X; Sun G; Qian G Zhonghua Jie He He Hu Xi Za Zhi; 1998 Oct; 21(10):598-600. PubMed ID: 11477876 [TBL] [Abstract][Full Text] [Related]
10. Mechanics and deformation of the nucleus in micropipette aspiration experiment. Vaziri A; Mofrad MR J Biomech; 2007; 40(9):2053-62. PubMed ID: 17112531 [TBL] [Abstract][Full Text] [Related]
11. Methods for studying leukocyte filterability in undiluted blood from intermittent claudicants. Cook AM; Jones JG; Lane IF; Evans SA Clin Hemorheol Microcirc; 1998 Dec; 19(4):271-80. PubMed ID: 9972664 [TBL] [Abstract][Full Text] [Related]
12. The behavior of human neutrophils during flow through capillary pores. Frank RS; Tsai MA J Biomech Eng; 1990 Aug; 112(3):277-82. PubMed ID: 2214709 [TBL] [Abstract][Full Text] [Related]
13. Rapid flow of passive neutrophils into a 4 microns pipet and measurement of cytoplasmic viscosity. Needham D; Hochmuth RM J Biomech Eng; 1990 Aug; 112(3):269-76. PubMed ID: 2214708 [TBL] [Abstract][Full Text] [Related]
14. The influence of suspending phase viscosity on the passage of red blood cells through capillary-size micropores. Fisher TC; Van Der Waart FJ; Meiselman HJ Biorheology; 1996; 33(2):153-68. PubMed ID: 8679962 [TBL] [Abstract][Full Text] [Related]
15. Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity. Janzen J; Elliott TG; Carter CJ; Brooks DE Biorheology; 2000; 37(3):225-37. PubMed ID: 11026942 [TBL] [Abstract][Full Text] [Related]
16. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Chien S; Sung KL; Skalak R; Usami S; Tözeren A Biophys J; 1978 Nov; 24(2):463-87. PubMed ID: 728524 [TBL] [Abstract][Full Text] [Related]
17. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels. Korin N; Bransky A; Dinnar U J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279 [TBL] [Abstract][Full Text] [Related]
18. Effect of colchicine on viscoelastic properties of neutrophils. Chien S; Sung KL Biophys J; 1984 Sep; 46(3):383-6. PubMed ID: 6487737 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the viscoelastic properties of normal hepatocytes and hepatocellular carcinoma cells under cytoskeletal perturbation. Wu ZZ; Zhang G; Long M; Wang HB; Song GB; Cai SX Biorheology; 2000; 37(4):279-90. PubMed ID: 11145074 [TBL] [Abstract][Full Text] [Related]
20. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Sharan M; Popel AS Biorheology; 2001; 38(5-6):415-28. PubMed ID: 12016324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]