These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20571670)

  • 1. Conducting supramolecular nanofibers and nanorods.
    Hasegawa M; Iyoda M
    Chem Soc Rev; 2010 Jul; 39(7):2420-7. PubMed ID: 20571670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular template approach for evolution of conducting polymer nanostructures: tracing the role of morphology on conductivity and solid state ordering.
    Antony MJ; Jayakannan M
    J Phys Chem B; 2010 Jan; 114(3):1314-24. PubMed ID: 20050618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly and conductivity of hydrogen-bonded oligothiophene nanofiber networks.
    Stone DA; Tayi AS; Goldberger JE; Palmer LC; Stupp SI
    Chem Commun (Camb); 2011 May; 47(20):5702-4. PubMed ID: 21503343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, self-assembly, and characterization of supramolecular polymers from electroactive dendron rodcoil molecules.
    Messmore BW; Hulvat JF; Sone ED; Stupp SI
    J Am Chem Soc; 2004 Nov; 126(44):14452-8. PubMed ID: 15521765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magneto resistance of polyacetylene nanofibers.
    Park YW
    Chem Soc Rev; 2010 Jul; 39(7):2428-38. PubMed ID: 20517540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel supramolecular organogel nanotubular template approach for conducting nanomaterials.
    Anilkumar P; Jayakannan M
    J Phys Chem B; 2010 Jan; 114(2):728-36. PubMed ID: 19924837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoluminescence and conductivity of self-assembled pi-pi stacks of perylene bisimide dyes.
    Chen Z; Stepanenko V; Dehm V; Prins P; Siebbeles LD; Seibt J; Marquetand P; Engel V; Würthner F
    Chemistry; 2007; 13(2):436-49. PubMed ID: 17143925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo design of a bolaamphiphilic peptide with only natural amino acids.
    Qiu F; Chen Y; Tang C; Zhou Q; Wang C; Shi YK; Zhao X
    Macromol Biosci; 2008 Nov; 8(11):1053-9. PubMed ID: 18830953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affinity-based screening of peptides recognizing assembly states of self-assembling peptide nanomaterials.
    Sawada T; Takahashi T; Mihara H
    J Am Chem Soc; 2009 Oct; 131(40):14434-41. PubMed ID: 19764764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synthesis of dendritic EDOT-peptide conjugates and their multistimuli-responsive self-assembly into supramolecular nanorods and fibers in water.
    Ahlers P; Frisch H; Spitzer D; Vobecka Z; Vilela F; Besenius P
    Chem Asian J; 2014 Aug; 9(8):2052-7. PubMed ID: 24839177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New renewable resource amphiphilic molecular design for size-controlled and highly ordered polyaniline nanofibers.
    Anilkumar P; Jayakannan M
    Langmuir; 2006 Jun; 22(13):5952-7. PubMed ID: 16768535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyaniline nanofibers: a unique polymer nanostructure for versatile applications.
    Li D; Huang J; Kaner RB
    Acc Chem Res; 2009 Jan; 42(1):135-45. PubMed ID: 18986177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of supramolecular light-harvesting arrays from covalent multi-chromophore perylene-3,4:9,10-bis(dicarboximide) building blocks.
    Ahrens MJ; Sinks LE; Rybtchinski B; Liu W; Jones BA; Giaimo JM; Gusev AV; Goshe AJ; Tiede DM; Wasielewski MR
    J Am Chem Soc; 2004 Jul; 126(26):8284-94. PubMed ID: 15225071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of helical nanofibers from self-assembling pseudopeptide building blocks: modulating the handedness and breaking the helicity.
    Guha S; Drew MG; Banerjee A
    Small; 2008 Nov; 4(11):1993-2005. PubMed ID: 18949791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic hydrogelation of small molecules.
    Yang Z; Liang G; Xu B
    Acc Chem Res; 2008 Feb; 41(2):315-26. PubMed ID: 18205323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-based chemical synthesis of boehmite nanofibers and alumina nanorods.
    Kuiry SC; Megen E; Patil SD; Deshpande SA; Seal S
    J Phys Chem B; 2005 Mar; 109(9):3868-72. PubMed ID: 16851437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of point defect formation and self-compensation in indium doped ZnO nanorods by STM and STS.
    González-Carrazco A; Herrera-Zaldívar M; Pal U
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6598-602. PubMed ID: 19205247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-organized perylene diimide nanofibers.
    Yan P; Chowdhury A; Holman MW; Adams DM
    J Phys Chem B; 2005 Jan; 109(2):724-30. PubMed ID: 16866433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confined assembly of asymmetric block-copolymer nanofibers via multiaxial jet electrospinning.
    Kalra V; Lee JH; Park JH; Marquez M; Joo YL
    Small; 2009 Oct; 5(20):2323-32. PubMed ID: 19526533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.