These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20571785)

  • 1. Functional MRI mapping neuronal inhibition and excitation at columnar level in human visual cortex.
    Zhang N; Zhu XH; Yacoub E; Ugurbil K; Chen W
    Exp Brain Res; 2010 Aug; 204(4):515-24. PubMed ID: 20571785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping iso-orientation columns by contrast agent-enhanced functional magnetic resonance imaging: reproducibility, specificity, and evaluation by optical imaging of intrinsic signal.
    Fukuda M; Moon CH; Wang P; Kim SG
    J Neurosci; 2006 Nov; 26(46):11821-32. PubMed ID: 17108155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI.
    Goodyear BG; Menon RS
    Hum Brain Mapp; 2001 Dec; 14(4):210-7. PubMed ID: 11668652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-high field fMRI reveals origins of feedforward and feedback activity within laminae of human ocular dominance columns.
    de Hollander G; van der Zwaag W; Qian C; Zhang P; Knapen T
    Neuroimage; 2021 Mar; 228():117683. PubMed ID: 33385565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging.
    Menon RS; Ogawa S; Strupp JP; Uğurbil K
    J Neurophysiol; 1997 May; 77(5):2780-7. PubMed ID: 9163392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution mapping of iso-orientation columns by fMRI.
    Kim DS; Duong TQ; Kim SG
    Nat Neurosci; 2000 Feb; 3(2):164-9. PubMed ID: 10649572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A micro-architecture for binocular disparity and ocular dominance in visual cortex.
    Kara P; Boyd JD
    Nature; 2009 Apr; 458(7238):627-31. PubMed ID: 19158677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-field fMRI unveils orientation columns in humans.
    Yacoub E; Harel N; Ugurbil K
    Proc Natl Acad Sci U S A; 2008 Jul; 105(30):10607-12. PubMed ID: 18641121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla.
    Yacoub E; Shmuel A; Logothetis N; Uğurbil K
    Neuroimage; 2007 Oct; 37(4):1161-77. PubMed ID: 17702606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of ocular dominance columns and patchy callosal connections on binocularity in lateral striate cortex: Long Evans versus albino rats.
    Andelin AK; Doyle Z; Laing RJ; Turecek J; Lin B; Olavarria JF
    J Comp Neurol; 2020 Mar; 528(4):650-663. PubMed ID: 31606892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct mapping of ocular dominance columns in human primary visual cortex.
    Dechent P; Frahm J
    Neuroreport; 2000 Sep; 11(14):3247-9. PubMed ID: 11043557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical responses to invisible objects in the human dorsal and ventral pathways.
    Fang F; He S
    Nat Neurosci; 2005 Oct; 8(10):1380-5. PubMed ID: 16136038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eye dominance predicts fMRI signals in human retinotopic cortex.
    Mendola JD; Conner IP
    Neurosci Lett; 2007 Feb; 414(1):30-4. PubMed ID: 17194544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate decoding of sub-TR timing differences in stimulations of sub-voxel regions from multi-voxel response patterns.
    Misaki M; Luh WM; Bandettini PA
    Neuroimage; 2013 Feb; 66():623-33. PubMed ID: 23128073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying decoding at 7 T: ocular dominance columns, broad structures, and macroscopic blood vessels in V1 convey information on the stimulated eye.
    Shmuel A; Chaimow D; Raddatz G; Ugurbil K; Yacoub E
    Neuroimage; 2010 Feb; 49(3):1957-64. PubMed ID: 19715765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ocular dominance affects magnitude of dipole moment: an MEG study.
    Shima H; Hasegawa M; Tachibana O; Nomura M; Yamashita J; Ozaki Y; Kawai J; Higuchi M; Kado H
    Neuroreport; 2010 Aug; 21(12):817-21. PubMed ID: 20613677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An fMRI study of neural interaction in large-scale cortico-thalamic visual network.
    Zhang N; Zhu XH; Zhang Y; Chen W
    Neuroimage; 2008 Sep; 42(3):1110-7. PubMed ID: 18598771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of functional magnetic resonance imaging of ocular dominance and orientation preference in primary visual cortex.
    Menezes de Oliveira M; Pang JC; Robinson PA; Liu X; Schira MM
    PLoS Comput Biol; 2019 Nov; 15(11):e1007418. PubMed ID: 31682598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional magnetic resonance imaging evidence for binocular interactions in human visual cortex.
    Büchert M; Greenlee MW; Rutschmann RM; Kraemer FM; Luo F; Hennig J
    Exp Brain Res; 2002 Aug; 145(3):334-9. PubMed ID: 12136383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A temporal frequency-dependent functional architecture in human V1 revealed by high-resolution fMRI.
    Sun P; Ueno K; Waggoner RA; Gardner JL; Tanaka K; Cheng K
    Nat Neurosci; 2007 Nov; 10(11):1404-6. PubMed ID: 17934459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.