These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20572256)

  • 1. Flexible magnetic nanoparticles-reduced graphene oxide composite membranes formed by self-assembly in solution.
    Zhu G; Liu Y; Xu Z; Jiang T; Zhang C; Li X; Qi G
    Chemphyschem; 2010 Aug; 11(11):2432-7. PubMed ID: 20572256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile and straightforward synthesis of superparamagnetic reduced graphene oxide-Fe3O4 hybrid composite by a solvothermal reaction.
    Liu YW; Guan MX; Feng L; Deng SL; Bao JF; Xie SY; Chen Z; Huang RB; Zheng LS
    Nanotechnology; 2013 Jan; 24(2):025604. PubMed ID: 23220906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.
    Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q
    Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells.
    Ji L; Tan Z; Kuykendall TR; Aloni S; Xun S; Lin E; Battaglia V; Zhang Y
    Phys Chem Chem Phys; 2011 Apr; 13(15):7170-7. PubMed ID: 21399829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications.
    Xue Y; Chen H; Yu D; Wang S; Yardeni M; Dai Q; Guo M; Liu Y; Lu F; Qu J; Dai L
    Chem Commun (Camb); 2011 Nov; 47(42):11689-91. PubMed ID: 21952144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of reduced graphene oxide/CeO2 nanocomposites and their photocatalytic properties.
    Ji Z; Shen X; Li M; Zhou H; Zhu G; Chen K
    Nanotechnology; 2013 Mar; 24(11):115603. PubMed ID: 23448977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries.
    Wang H; Cui LF; Yang Y; Sanchez Casalongue H; Robinson JT; Liang Y; Cui Y; Dai H
    J Am Chem Soc; 2010 Oct; 132(40):13978-80. PubMed ID: 20853844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction.
    Pham VH; Dang TT; Hur SH; Kim EJ; Chung JS
    ACS Appl Mater Interfaces; 2012 May; 4(5):2630-6. PubMed ID: 22512434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles.
    He H; Gao C
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3201-10. PubMed ID: 20958021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide--polyelectrolyte nanomembranes.
    Kulkarni DD; Choi I; Singamaneni SS; Tsukruk VV
    ACS Nano; 2010 Aug; 4(8):4667-76. PubMed ID: 20669898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification.
    Sreeprasad TS; Maliyekkal SM; Lisha KP; Pradeep T
    J Hazard Mater; 2011 Feb; 186(1):921-31. PubMed ID: 21168962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene oxide--MnO2 nanocomposites for supercapacitors.
    Chen S; Zhu J; Wu X; Han Q; Wang X
    ACS Nano; 2010 May; 4(5):2822-30. PubMed ID: 20384318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide.
    Williams G; Kamat PV
    Langmuir; 2009 Dec; 25(24):13869-73. PubMed ID: 19453127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes.
    Jo K; Lee T; Choi HJ; Park JH; Lee DJ; Lee DW; Kim BS
    Langmuir; 2011 Mar; 27(5):2014-8. PubMed ID: 21226499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-based composite materials.
    Stankovich S; Dikin DA; Dommett GH; Kohlhaas KM; Zimney EJ; Stach EA; Piner RD; Nguyen ST; Ruoff RS
    Nature; 2006 Jul; 442(7100):282-6. PubMed ID: 16855586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage.
    Wang D; Kou R; Choi D; Yang Z; Nie Z; Li J; Saraf LV; Hu D; Zhang J; Graff GL; Liu J; Pope MA; Aksay IA
    ACS Nano; 2010 Mar; 4(3):1587-95. PubMed ID: 20184383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.
    Kalambur VS; Longmire EK; Bischof JC
    Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction.
    Cao L; Liu Y; Zhang B; Lu L
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2339-46. PubMed ID: 20735106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanostraws: nanotubes filled with superparamagnetic nanoparticles.
    Pal S; Chandra S; Phan MH; Mukherjee P; Srikanth H
    Nanotechnology; 2009 Dec; 20(48):485604. PubMed ID: 19880982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.