BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20572669)

  • 1. Investigation of reactive alpha-dicarbonyl compounds generated from the Maillard reactions of L-methionine with reducing sugars via their stable quinoxaline derivatives.
    Pfeifer YV; Kroh LW
    J Agric Food Chem; 2010 Jul; 58(14):8293-9. PubMed ID: 20572669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel insights into the maillard catalyzed degradation of maltose.
    Smuda M; Glomb MA
    J Agric Food Chem; 2011 Dec; 59(24):13254-64. PubMed ID: 22122608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of glucose: reinvestigation of reactive alpha-Dicarbonyl compounds.
    Gobert J; Glomb MA
    J Agric Food Chem; 2009 Sep; 57(18):8591-7. PubMed ID: 19711949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. News on the Maillard reaction of oligomeric carbohydrates: a survey.
    Kroh LW; Schulz A
    Nahrung; 2001 Jun; 45(3):160-3. PubMed ID: 11455781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model studies on the oxidation of benzoyl methionine in a carbohydrate degradation system.
    Hellwig M; Löbmann K; Orywol T; Voigt A
    J Agric Food Chem; 2014 May; 62(19):4425-33. PubMed ID: 24766214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of 1-deoxy-D-erythro-hexo-2,3-diulose: a key intermediate in the maillard chemistry of hexoses.
    Voigt M; Glomb MA
    J Agric Food Chem; 2009 Jun; 57(11):4765-70. PubMed ID: 19422225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of oligosaccharides in nonenzymatic browning by formation of alpha-dicarbonyl compounds via a "peeling off" mechanism.
    Hollnagel A; Kroh LW
    J Agric Food Chem; 2000 Dec; 48(12):6219-26. PubMed ID: 11312795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragmentation pathways during Maillard-induced carbohydrate degradation.
    Smuda M; Glomb MA
    J Agric Food Chem; 2013 Oct; 61(43):10198-208. PubMed ID: 23425499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sugar fragmentation in the maillard reaction cascade: formation of short-chain carboxylic acids by a new oxidative alpha-dicarbonyl cleavage pathway.
    Davídek T; Robert F; Devaud S; Vera FA; Blank I
    J Agric Food Chem; 2006 Sep; 54(18):6677-84. PubMed ID: 16939326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the aroma-active compounds formed in the maillard reaction between glutathione and reducing sugars.
    Lee SM; Jo YJ; Kim YS
    J Agric Food Chem; 2010 Mar; 58(5):3116-24. PubMed ID: 20146478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. alpha-Dicarbonyl compounds--key intermediates for the formation of carbohydrate-based melanoidins.
    Kroh LW; Fiedler T; Wagner J
    Ann N Y Acad Sci; 2008 Apr; 1126():210-5. PubMed ID: 18448818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic method for the quantification of methionine sulfoxide.
    Brock JW; Cotham WC; Ames JM; Thorpe SR; Baynes JW
    Ann N Y Acad Sci; 2005 Jun; 1043():284-9. PubMed ID: 16037250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-deoxygalactosone, a "new" 1,2-dicarbonyl compound in milk products.
    Hellwig M; Degen J; Henle T
    J Agric Food Chem; 2010 Oct; 58(19):10752-60. PubMed ID: 20822095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues.
    Bobrowski K; Hug GL; Pogocki D; Marciniak B; Schöneich C
    J Phys Chem B; 2007 Aug; 111(32):9608-20. PubMed ID: 17658786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative pyrolysis and postpyrolytic derivatization techniques for the total analysis of maillard model systems: investigation of control parameters of maillard reaction pathways.
    Yaylayan VA; Haffenden L; Chu FL; Wnorowski A
    Ann N Y Acad Sci; 2005 Jun; 1043():41-54. PubMed ID: 16037220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity of thermally treated α-dicarbonyl compounds.
    Pfeifer YV; Haase PT; Kroh LW
    J Agric Food Chem; 2013 Mar; 61(12):3090-6. PubMed ID: 23432453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical study of the Maillard reaction.
    Rizzi GP
    J Agric Food Chem; 2003 Mar; 51(6):1728-31. PubMed ID: 12617613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of Reactive Intermediates, Color, and Antioxidant Activity in the Maillard Reaction of Maltose in Comparison to d-Glucose.
    Kanzler C; Schestkowa H; Haase PT; Kroh LW
    J Agric Food Chem; 2017 Oct; 65(40):8957-8965. PubMed ID: 28880081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-enzymatic model glycation reactions--a comprehensive study of the reactivity of a modified arginine with aldehydic and diketonic dicarbonyl compounds by electrospray mass spectrometry.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Jun; 41(6):755-70. PubMed ID: 16646000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonvolatile oxidation products of glucose in Maillard model systems: formation of saccharinic and aldonic acids and their corresponding lactones.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2008 Mar; 56(5):1638-43. PubMed ID: 18251497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.