These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 20572691)

  • 21. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms.
    Tang LY; Yan ZC; Shi TY; Babb JF; Mitroy J
    J Chem Phys; 2012 Mar; 136(10):104104. PubMed ID: 22423825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complete basis set limit second-order Møller-Plesset calculations for the fcc lattices of neon, argon, krypton, and xenon.
    Hermann A; Schwerdtfeger P
    J Chem Phys; 2009 Dec; 131(24):244508. PubMed ID: 20059080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the dispersion interactions and an ab initio study of van der Waals potential energy parameters for coinage metal clusters.
    Hatz R; Korpinen M; Hänninen V; Halonen L
    J Phys Chem A; 2012 Nov; 116(47):11685-93. PubMed ID: 23102100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations.
    Misquitta AJ; Podeszwa R; Jeziorski B; Szalewicz K
    J Chem Phys; 2005 Dec; 123(21):214103. PubMed ID: 16356035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The rotational spectrum and structure for the argon-cyclopentadienyl thallium van der Waals complex: experimental and computational studies of noncovalent bonding in an organometallic pi-complex.
    Tanjaroon C; Daly AM; Kukolich SG
    J Chem Phys; 2008 Aug; 129(5):054305. PubMed ID: 18698898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Many-body van der Waals interactions in molecules and condensed matter.
    DiStasio RA; Gobre VV; Tkatchenko A
    J Phys Condens Matter; 2014 May; 26(21):213202. PubMed ID: 24805055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An analysis of the correlation energy contribution to the interaction energy of inert gas dimers.
    Snook I; Per MC; Russo SP
    J Chem Phys; 2008 Oct; 129(16):164109. PubMed ID: 19045249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions of transition metal atoms in high-spin states: Cr2, Sc-Cr, and Sc-Kr.
    Rajchel L; Zuchowski PS; Kłos J; Szcześniak MM; Chałasiński G
    J Chem Phys; 2007 Dec; 127(24):244302. PubMed ID: 18163670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Van der Waals density functional from multipole dispersion interactions.
    Alves de Lima N
    J Chem Phys; 2010 Jan; 132(1):014110. PubMed ID: 20078152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fully retarded van der Waals interaction between dielectric nanoclusters.
    Kim HY; Sofo JO; Velegol D; Cole MW
    J Chem Phys; 2006 Nov; 125(17):174303. PubMed ID: 17100435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Van der waals interactions in molecular assemblies from first-principles calculations.
    Li Y; Lu D; Nguyen HV; Galli G
    J Phys Chem A; 2010 Feb; 114(4):1944-52. PubMed ID: 20043660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen-hydrogen bonding: a stabilizing interaction in molecules and crystals.
    Matta CF; Hernández-Trujillo J; Tang TH; Bader RF
    Chemistry; 2003 May; 9(9):1940-51. PubMed ID: 12740840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computing van der Waals energies in the context of the rotamer approximation.
    Grigoryan G; Ochoa A; Keating AE
    Proteins; 2007 Sep; 68(4):863-78. PubMed ID: 17554777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting noncovalent interactions between aromatic biomolecules with London-dispersion-corrected DFT.
    Lin IC; Lilienfeld OA; Coutinho-Neto MD; Tavernelli I; Rothlisberger U
    J Phys Chem B; 2007 Dec; 111(51):14346-54. PubMed ID: 18052270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward an accurate and efficient theory of physisorption. I. Development of an augmented density-functional theory model.
    Murdachaew G; de Gironcoli S; Scoles G
    J Phys Chem A; 2008 Oct; 112(40):9993-1005. PubMed ID: 18771248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organic crystal polymorphism: a benchmark for dispersion-corrected mean-field electronic structure methods.
    Brandenburg JG; Grimme S
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Aug; 72(Pt 4):502-13. PubMed ID: 27484372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Van der Waals interactions in aromatic systems: structure and energetics of dimers and trimers of pyridine.
    Piacenza M; Grimme S
    Chemphyschem; 2005 Aug; 6(8):1554-8. PubMed ID: 16013080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Van der waals and polar intermolecular contact distances: quantifying supramolecular synthons.
    Ganguly P; Desiraju GR
    Chem Asian J; 2008 May; 3(5):868-80. PubMed ID: 18386268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Empirically augmented density functional theory for predicting lattice energies of aspirin, acetaminophen polymorphs, and ibuprofen homochiral and racemic crystals.
    Li T; Feng S
    Pharm Res; 2006 Oct; 23(10):2326-32. PubMed ID: 16927187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe).
    Krapp A; Frenking G
    Chemistry; 2007; 13(29):8256-70. PubMed ID: 17639524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.