These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20572869)

  • 1. Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads.
    Kivisaar M
    FEMS Microbiol Lett; 2010 Nov; 312(1):1-14. PubMed ID: 20572869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida.
    Saumaa S; Tover A; Tark M; Tegova R; Kivisaar M
    J Bacteriol; 2007 Aug; 189(15):5504-14. PubMed ID: 17545288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous mutagenesis in exponentially growing and stationary-phase, umuDC-proficient and -deficient, Escherichia coli dnaQ49.
    Nowosielska A; Nieminuszczy J; Grzesiuk E
    Acta Biochim Pol; 2004; 51(3):683-92. PubMed ID: 15448730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new look at adaptive mutations in bacteria.
    Janion C
    Acta Biochim Pol; 2000; 47(2):451-7. PubMed ID: 11051210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of GacA, LasI, RhlI, Ppk, PsrA, Vfr and ClpXP in the regulation of the stationary-phase sigma factor rpoS/RpoS in Pseudomonas.
    Bertani I; Sevo M; Kojic M; Venturi V
    Arch Microbiol; 2003 Oct; 180(4):264-71. PubMed ID: 12879217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite repression of SOS-dependent and SOS-independent spontaneous mutagenesis in stationary-phase Escherichia coli.
    MacPhee DG; Ambrose M
    Mutat Res; 2010 Apr; 686(1-2):84-9. PubMed ID: 20138895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of involvement of ImuB and DnaE2 in stationary-phase mutagenesis in Pseudomonas putida.
    Koorits L; Tegova R; Tark M; Tarassova K; Tover A; Kivisaar M
    DNA Repair (Amst); 2007 Jun; 6(6):863-8. PubMed ID: 17331811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High deleterious genomic mutation rate in stationary phase of Escherichia coli.
    Loewe L; Textor V; Scherer S
    Science; 2003 Nov; 302(5650):1558-60. PubMed ID: 14645846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transposon mutagenesis identifies genes which control antimicrobial drug tolerance in stationary-phase Escherichia coli.
    Hu Y; Coates AR
    FEMS Microbiol Lett; 2005 Feb; 243(1):117-24. PubMed ID: 15668009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generational coexistence and ancestor's inhibition in bacterial populations.
    Baquero F; Lemonnier M
    FEMS Microbiol Rev; 2009 Sep; 33(5):958-67. PubMed ID: 19500144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of DNA mismatch repair in stationary-phase mutagenesis during prolonged starvation of Pseudomonas putida.
    Saumaa S; Tarassova K; Tark M; Tover A; Tegova R; Kivisaar M
    DNA Repair (Amst); 2006 Apr; 5(4):505-14. PubMed ID: 16414311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of deletion of SOS-induced polymerases, pol II, IV, and V, on spontaneous mutagenesis in Escherichia coli mutD5.
    Nowosielska A; Janion C; Grzesiuk E
    Environ Mol Mutagen; 2004; 43(4):226-34. PubMed ID: 15141361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive mutagenesis: a process that generates almost exclusively beneficial mutations.
    Hall BG
    Genetica; 1998; 102-103(1-6):109-25. PubMed ID: 9720275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The host range of RK2 minimal replicon copy-up mutants is limited by species-specific differences in the maximum tolerable copy number.
    Haugan K; Karunakaran P; Tøndervik A; Valla S
    Plasmid; 1995 Jan; 33(1):27-39. PubMed ID: 7753906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress.
    Kivisaar M
    Environ Microbiol; 2003 Oct; 5(10):814-27. PubMed ID: 14510835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation in resting cells: the role of endogenous DNA damage.
    Bridges BA
    Cancer Surv; 1996; 28():155-67. PubMed ID: 8977034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenic DNA repair potential in Pseudomonas spp., and characterization of the rulABPc operon from the highly mutable strain Pseudomonas cichorii 302959.
    Zhang S; Sundin GW
    Can J Microbiol; 2004 Jan; 50(1):29-39. PubMed ID: 15052319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment.
    Rojo F
    FEMS Microbiol Rev; 2010 Sep; 34(5):658-84. PubMed ID: 20412307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of SOS-induced Pol II, Pol IV, and Pol V DNA polymerases on UV-induced mutagenesis and MFD repair in Escherichia coli cells.
    Wrzesiński M; Nowosielska A; Nieminuszczy J; Grzesiuk E
    Acta Biochim Pol; 2005; 52(1):139-47. PubMed ID: 15827613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual role of NER in mutagenesis in Pseudomonas putida.
    Tark M; Tover A; Koorits L; Tegova R; Kivisaar M
    DNA Repair (Amst); 2008 Jan; 7(1):20-30. PubMed ID: 17720631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.