BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20573043)

  • 1. The hydroxypyridinone iron chelator CP94 can enhance PpIX-induced PDT of cultured human glioma cells.
    Blake E; Curnow A
    Photochem Photobiol; 2010; 86(5):1154-60. PubMed ID: 20573043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of protoporphyrin IX-induced photodynamic therapy with and without iron chelation on human squamous carcinoma cells cultured under normoxic, hypoxic and hyperoxic conditions.
    Blake E; Allen J; Curnow A
    Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):575-82. PubMed ID: 24284114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vitro comparison of the effects of the iron-chelating agents, CP94 and dexrazoxane, on protoporphyrin IX accumulation for photodynamic therapy and/or fluorescence guided resection.
    Blake E; Allen J; Curnow A
    Photochem Photobiol; 2011; 87(6):1419-26. PubMed ID: 21834866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental investigation of a novel iron chelating protoporphyrin IX prodrug for the enhancement of photodynamic therapy.
    Anayo L; Magnussen A; Perry A; Wood M; Curnow A
    Lasers Surg Med; 2018 Jul; 50(5):552-565. PubMed ID: 29603761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct comparison of delta-aminolevulinic acid and methyl-aminolevulinate-derived protoporphyrin IX accumulations potentiated by desferrioxamine or the novel hydroxypyridinone iron chelator CP94 in cultured human cells.
    Pye A; Curnow A
    Photochem Photobiol; 2007; 83(3):766-73. PubMed ID: 17576385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The efficacy of an iron chelator (CP94) in increasing cellular protoporphyrin IX following intravesical 5-aminolaevulinic acid administration: an in vivo study.
    Chang SC; MacRobert AJ; Porter JB; Bown SG
    J Photochem Photobiol B; 1997 Apr; 38(2-3):114-22. PubMed ID: 9203372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving in vitro photodynamic therapy through the development of a novel iron chelating aminolaevulinic acid prodrug.
    Curnow A; Perry A; Wood M
    Photodiagnosis Photodyn Ther; 2019 Mar; 25():157-165. PubMed ID: 30553949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species.
    Dogra Y; Ferguson DCJ; Dodd NJF; Smerdon GR; Curnow A; Winyard PG
    Redox Biol; 2016 Oct; 9():90-99. PubMed ID: 27454766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical manipulation via iron chelation to enhance porphyrin production from porphyrin precursors.
    Curnow A; Pye A
    J Environ Pathol Toxicol Oncol; 2007; 26(2):89-103. PubMed ID: 17725535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of methyl-aminolevulinate photodynamic therapy by iron chelation with CP94: an in vitro investigation and clinical dose-escalating safety study for the treatment of nodular basal cell carcinoma.
    Pye A; Campbell S; Curnow A
    J Cancer Res Clin Oncol; 2008 Aug; 134(8):841-9. PubMed ID: 18239941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of 5-aminolaevulinic acid-induced photodynamic therapy in normal rat colon using hydroxypyridinone iron-chelating agents.
    Curnow A; McIlroy BW; Postle-Hacon MJ; Porter JB; MacRobert AJ; Bown SG
    Br J Cancer; 1998 Nov; 78(10):1278-82. PubMed ID: 9823966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation of a combinational iron chelating protoporphyrin IX prodrug for fluorescence detection and photodynamic therapy.
    Magnussen A; Reburn C; Perry A; Wood M; Curnow A
    Lasers Med Sci; 2022 Mar; 37(2):1155-1166. PubMed ID: 34218351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Iron-Chelating Prodrug Significantly Enhanced Fluorescence-Mediated Detection of Glioma Cells Experimentally In Vitro.
    Reburn C; Gawthorpe G; Perry A; Wood M; Curnow A
    Pharmaceutics; 2023 Nov; 15(12):. PubMed ID: 38140009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical investigation of the novel iron-chelating agent, CP94, to enhance topical photodynamic therapy of nodular basal cell carcinoma.
    Campbell SM; Morton CA; Alyahya R; Horton S; Pye A; Curnow A
    Br J Dermatol; 2008 Aug; 159(2):387-93. PubMed ID: 18544077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hydroxypyridinone (CP94) enhances protoporphyrin IX formation in 5-aminolaevulinic acid treated cells.
    Bech O; Phillips D; Moan J; MacRobert AJ
    J Photochem Photobiol B; 1997 Nov; 41(1-2):136-44. PubMed ID: 9440321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcitriol enhances 5-aminolevulinic acid-induced fluorescence and the effect of photodynamic therapy in human glioma.
    Chen X; Wang C; Teng L; Liu Y; Chen X; Yang G; Wang L; Liu H; Liu Z; Zhang D; Zhang Y; Guan H; Li X; Fu C; Zhao B; Yin F; Zhao S
    Acta Oncol; 2014 Mar; 53(3):405-13. PubMed ID: 24032442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-dose arsenic trioxide enhances 5-aminolevulinic acid-induced PpIX accumulation and efficacy of photodynamic therapy in human glioma.
    Wang C; Chen X; Wu J; Liu H; Ji Z; Shi H; Gao C; Han D; Wang L; Liu Y; Yang G; Fu C; Li H; Zhang D; Liu Z; Li X; Yin F; Zhao S
    J Photochem Photobiol B; 2013 Oct; 127():61-7. PubMed ID: 23962849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymeric iron chelators for enhancing 5-aminolevulinic acid-induced photodynamic therapy.
    Nomoto T; Komoto K; Nagano T; Ishii T; Guo H; Honda Y; Ogura SI; Ishizuka M; Nishiyama N
    Cancer Sci; 2023 Mar; 114(3):1086-1094. PubMed ID: 36341512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic localisation of protoporphyrin IX in normal mouse skin after topical application of 5-aminolevulinic acid or methyl 5-aminolevulinate.
    de Bruijn HS; Meijers C; van der Ploeg-van den Heuvel A; Sterenborg HJ; Robinson DJ
    J Photochem Photobiol B; 2008 Aug; 92(2):91-7. PubMed ID: 18571933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring the accumulation and dissipation of the photosensitizer protoporphyrin IX during standard dermatological methyl-aminolevulinate photodynamic therapy utilizing non-invasive fluorescence imaging and quantification.
    Tyrrell J; Campbell SM; Curnow A
    Photodiagnosis Photodyn Ther; 2011 Mar; 8(1):30-8. PubMed ID: 21333932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.