BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 20573363)

  • 21. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme.
    Ahrazem O; Rubio-Moraga A; Berman J; Capell T; Christou P; Zhu C; Gómez-Gómez L
    New Phytol; 2016 Jan; 209(2):650-63. PubMed ID: 26377696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recovery of crocins from saffron stigmas (Crocus sativus) in aqueous two-phase systems.
    Montalvo-Hernández B; Rito-Palomares M; Benavides J
    J Chromatogr A; 2012 May; 1236():7-15. PubMed ID: 22463999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Processed stigmas of Crocus sativus L. imaged by MALDI-based MS.
    Pittenauer E; Rados E; Koulakiotis NS; Tsarbopoulos A; Allmaier G
    Proteomics; 2016 Jun; 16(11-12):1726-30. PubMed ID: 27006097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ABCC Transporters Mediate the Vacuolar Accumulation of Crocins in Saffron Stigmas.
    Demurtas OC; de Brito Francisco R; Diretto G; Ferrante P; Frusciante S; Pietrella M; Aprea G; Borghi L; Feeney M; Frigerio L; Coricello A; Costa G; Alcaro S; Martinoia E; Giuliano G
    Plant Cell; 2019 Nov; 31(11):2789-2804. PubMed ID: 31548254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis.
    Ahrazem O; Argandoña J; Fiore A; Aguado C; Luján R; Rubio-Moraga Á; Marro M; Araujo-Andrade C; Loza-Alvarez P; Diretto G; Gómez-Gómez L
    Sci Rep; 2018 Feb; 8(1):2843. PubMed ID: 29434251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of corm origin and climatic conditions on saffron (Crocus sativus L.) yield and quality.
    Cardone L; Castronuovo D; Perniola M; Cicco N; Candido V
    J Sci Food Agric; 2019 Oct; 99(13):5858-5869. PubMed ID: 31206680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low temperature maximizes growth of Crocus vernus (L.) Hill via changes in carbon partitioning and corm development.
    Lundmark M; Hurry V; Lapointe L
    J Exp Bot; 2009; 60(7):2203-13. PubMed ID: 19403850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blue Light Improves Photosynthetic Performance and Biomass Partitioning toward Harvestable Organs in Saffron (
    Moradi S; Kafi M; Aliniaeifard S; Salami SA; Shokrpour M; Pedersen C; Moosavi-Nezhad M; Wróbel J; Kalaji HM
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-species transcriptome analyses for the regulation of crocins biosynthesis in Crocus.
    Ahrazem O; Argandoña J; Fiore A; Rujas A; Rubio-Moraga Á; Castillo R; Gómez-Gómez L
    BMC Genomics; 2019 Apr; 20(1):320. PubMed ID: 31029081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A review of the chemistry and uses of crocins and crocetin, the carotenoid natural dyes in saffron, with particular emphasis on applications as colorants including their use as biological stains.
    Bathaie SZ; Farajzade A; Hoshyar R
    Biotech Histochem; 2014 Aug; 89(6):401-11. PubMed ID: 24665936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Crocetin Esters and Crocetin from Crocus sativus L. on Aortic Contractility in Rat Genetic Hypertension.
    Llorens S; Mancini A; Serrano-Díaz J; D'Alessandro AM; Nava E; Alonso GL; Carmona M
    Molecules; 2015 Sep; 20(9):17570-84. PubMed ID: 26402666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-depth analysis of crocetin ester glycosides from dried/processed stigmas of Crocus sativus L. by HPLC-ESI-MS
    Pittenauer E; Rados E; Tsarbopoulos A; Allmaier G
    Phytochem Anal; 2019 May; 30(3):346-356. PubMed ID: 30644146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of culinary processing time on saffron's bioactive compounds (Crocus sativus L.).
    Rodríguez-Neira L; Lage-Yusty MA; López-Hernández J
    Plant Foods Hum Nutr; 2014 Dec; 69(4):291-6. PubMed ID: 25373843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Saffron (
    El Midaoui A; Ghzaiel I; Vervandier-Fasseur D; Ksila M; Zarrouk A; Nury T; Khallouki F; El Hessni A; Ibrahimi SO; Latruffe N; Couture R; Kharoubi O; Brahmi F; Hammami S; Masmoudi-Kouki O; Hammami M; Ghrairi T; Vejux A; Lizard G
    Nutrients; 2022 Jan; 14(3):. PubMed ID: 35276955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcript profiling of carotenoid/apocarotenoid biosynthesis genes during corm development of saffron (Crocus sativus L.).
    Sharma M; Kaul S; Dhar MK
    Protoplasma; 2019 Jan; 256(1):249-260. PubMed ID: 30078109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural characterization of highly glucosylated crocins and regulation of their biosynthesis during flower development in Crocus.
    Ahrazem O; Rubio-Moraga A; Jimeno ML; Gómez-Gómez L
    Front Plant Sci; 2015; 6():971. PubMed ID: 26582258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Candidate Enzymes for Saffron Crocin Biosynthesis Are Localized in Multiple Cellular Compartments.
    Demurtas OC; Frusciante S; Ferrante P; Diretto G; Azad NH; Pietrella M; Aprea G; Taddei AR; Romano E; Mi J; Al-Babili S; Frigerio L; Giuliano G
    Plant Physiol; 2018 Jul; 177(3):990-1006. PubMed ID: 29844227
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Verbascum species as a new source of saffron apocarotenoids and molecular tools for the biotechnological production of crocins and picrocrocin.
    Morote L; Rubio-Moraga Á; López Jiménez AJ; Aragonés V; Diretto G; Demurtas OC; Frusciante S; Ahrazem O; Daròs JA; Gómez-Gómez L
    Plant J; 2024 Apr; 118(1):58-72. PubMed ID: 38100533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant.
    Wani ZA; Kumar A; Sultan P; Bindu K; Riyaz-Ul-Hassan S; Ashraf N
    Sci Rep; 2017 Aug; 7(1):8598. PubMed ID: 28819197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of main bioactive metabolites from saffron (Crocus sativus) stigmas by a micellar electrokinetic chromatographic (MEKC) method.
    Gonda S; Parizsa P; Surányi G; Gyémánt G; Vasas G
    J Pharm Biomed Anal; 2012 Jul; 66():68-74. PubMed ID: 22464563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.