These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20573627)

  • 41. Cross-species transcriptomics uncovers genes underlying genetic accommodation of developmental plasticity in spadefoot toads.
    Liedtke HC; Harney E; Gomez-Mestre I
    Mol Ecol; 2021 May; 30(10):2220-2234. PubMed ID: 33730392
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evolutionary reduction of developmental plasticity in desert spadefoot toads.
    Kulkarni SS; Gomez-Mestre I; Moskalik CL; Storz BL; Buchholz DR
    J Evol Biol; 2011 Nov; 24(11):2445-55. PubMed ID: 21883613
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Variation in hybrid gene expression: Implications for the evolution of genetic incompatibilities in interbreeding species.
    Seidl F; Levis NA; Jones CD; Monroy-Eklund A; Ehrenreich IM; Pfennig KS
    Mol Ecol; 2019 Oct; 28(20):4667-4679. PubMed ID: 31541560
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of sprint speed and body size on predator avoidance in New Mexican spadefoot toads (Spea multiplicata).
    Arendt JD
    Oecologia; 2009 Mar; 159(2):455-61. PubMed ID: 18987891
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolutionary innovation in the vertebrate jaw: A derived morphology in anuran tadpoles and its possible developmental origin.
    Svensson ME; Haas A
    Bioessays; 2005 May; 27(5):526-32. PubMed ID: 15832380
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evolution of character displacement in spadefoot toads: different proximate mechanisms in different species.
    Pfennig DW; Martin RA
    Evolution; 2010 Aug; 64(8):2331-41. PubMed ID: 20394671
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Character displacement as the "best of a bad situation": fitness trade-offs resulting from selection to minimize resource and mate competition.
    Pfennig KS; Pfennig DW
    Evolution; 2005 Oct; 59(10):2200-8. PubMed ID: 16405163
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluating the targets of selection during character displacement.
    Martin RA; Pfennig DW
    Evolution; 2011 Oct; 65(10):2946-58. PubMed ID: 21967434
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of range expansion in two species undergoing character displacement: why might invaders generally 'win' during character displacement?
    Rice AM; Pfennig DW
    J Evol Biol; 2008 May; 21(3):696-704. PubMed ID: 18341542
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tadpole nutritional ecology and digestive physiology: Implications for captive rearing of larval anurans.
    Pryor GS
    Zoo Biol; 2014; 33(6):502-7. PubMed ID: 25182482
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Field and experimental evidence for competition's role in phenotypic divergence.
    Pfennig DW; Rice AM; Martin RA
    Evolution; 2007 Feb; 61(2):257-71. PubMed ID: 17348937
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in digestive traits and body nutritional composition accommodate a trophic niche shift in Trinidadian guppies.
    Sullam KE; Dalton CM; Russell JA; Kilham SS; El-Sabaawi R; German DP; Flecker AS
    Oecologia; 2015 Jan; 177(1):245-57. PubMed ID: 25430044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Roles of stress hormones in food intake regulation in anuran amphibians throughout the life cycle.
    Crespi EJ; Denver RJ
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Aug; 141(4):381-90. PubMed ID: 16140236
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Developmental plasticity and the origin of novel forms: unveiling cryptic genetic variation via "use and disuse".
    Palmer AR
    J Exp Zool B Mol Dev Evol; 2012 Sep; 318(6):466-79. PubMed ID: 22038780
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism of tongue protraction during prey capture in the spadefoot toad Spea multiplicata (Anura: Pelobatidae).
    O'Reilly SR; Nishikawa KC
    J Exp Zool; 1995 Nov; 273(4):282-96. PubMed ID: 8530912
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Endocrine mechanisms, behavioral phenotypes and plasticity: known relationships and open questions.
    Hau M; Goymann W
    Front Zool; 2015; 12 Suppl 1(Suppl 1):S7. PubMed ID: 26816524
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Facultative mate choice drives adaptive hybridization.
    Pfennig KS
    Science; 2007 Nov; 318(5852):965-7. PubMed ID: 17991861
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Emerging model systems in eco-evo-devo: the environmentally responsive spadefoot toad.
    Ledón-Rettig CC; Pfennig DW
    Evol Dev; 2011; 13(4):391-400. PubMed ID: 21740512
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Female toads engaging in adaptive hybridization prefer high-quality heterospecifics as mates.
    Chen C; Pfennig KS
    Science; 2020 Mar; 367(6484):1377-1379. PubMed ID: 32193328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis.
    Denver RJ
    Horm Behav; 1997 Apr; 31(2):169-79. PubMed ID: 9154437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.