These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 20573883)
1. Homeostatic switch in hebbian plasticity and fear learning after sustained loss of Cav1.2 calcium channels. Langwieser N; Christel CJ; Kleppisch T; Hofmann F; Wotjak CT; Moosmang S J Neurosci; 2010 Jun; 30(25):8367-75. PubMed ID: 20573883 [TBL] [Abstract][Full Text] [Related]
2. Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Mahanty NK; Sah P Nature; 1998 Aug; 394(6694):683-7. PubMed ID: 9716132 [TBL] [Abstract][Full Text] [Related]
3. Synaptic transmission and plasticity in the amygdala. An emerging physiology of fear conditioning circuits. Maren S Mol Neurobiol; 1996 Aug; 13(1):1-22. PubMed ID: 8892333 [TBL] [Abstract][Full Text] [Related]
4. Forebrain NR2B overexpression enhancing fear acquisition and long-term potentiation in the lateral amygdala. Duan Y; Zhou S; Ma J; Yin P; Cao X Eur J Neurosci; 2015 Sep; 42(5):2214-23. PubMed ID: 26118841 [TBL] [Abstract][Full Text] [Related]
5. Spatiotemporal asymmetry of associative synaptic plasticity in fear conditioning pathways. Shin RM; Tsvetkov E; Bolshakov VY Neuron; 2006 Dec; 52(5):883-96. PubMed ID: 17145508 [TBL] [Abstract][Full Text] [Related]
6. Fear memories induce a switch in stimulus response and signaling mechanisms for long-term potentiation in the lateral amygdala. Schroeder BW; Shinnick-Gallagher P Eur J Neurosci; 2004 Jul; 20(2):549-56. PubMed ID: 15233764 [TBL] [Abstract][Full Text] [Related]
7. Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca Sanderson JL; Scott JD; Dell'Acqua ML J Neurosci; 2018 Mar; 38(11):2863-2876. PubMed ID: 29440558 [TBL] [Abstract][Full Text] [Related]
8. L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. Weisskopf MG; Bauer EP; LeDoux JE J Neurosci; 1999 Dec; 19(23):10512-9. PubMed ID: 10575047 [TBL] [Abstract][Full Text] [Related]
9. Ex vivo depotentiation of conditioning-induced potentiation at thalamic input synapses onto the lateral amygdala requires GluN2B-containing NMDA receptors. Park S; Lee S; Kim J; Choi S Neurosci Lett; 2012 Nov; 530(2):121-6. PubMed ID: 23069667 [TBL] [Abstract][Full Text] [Related]
10. Postsynaptic receptor trafficking underlying a form of associative learning. Rumpel S; LeDoux J; Zador A; Malinow R Science; 2005 Apr; 308(5718):83-8. PubMed ID: 15746389 [TBL] [Abstract][Full Text] [Related]
11. Long-term potentiation at excitatory synaptic inputs to the intercalated cell masses of the amygdala. Huang CC; Chen CC; Liang YC; Hsu KS Int J Neuropsychopharmacol; 2014 Aug; 17(8):1233-42. PubMed ID: 24556032 [TBL] [Abstract][Full Text] [Related]
12. Pavlovian fear conditioning regulates Thr286 autophosphorylation of Ca2+/calmodulin-dependent protein kinase II at lateral amygdala synapses. Rodrigues SM; Farb CR; Bauer EP; LeDoux JE; Schafe GE J Neurosci; 2004 Mar; 24(13):3281-8. PubMed ID: 15056707 [TBL] [Abstract][Full Text] [Related]
13. Convergent but temporally separated inputs to lateral amygdala neurons from the auditory thalamus and auditory cortex use different postsynaptic receptors: in vivo intracellular and extracellular recordings in fear conditioning pathways. Li XF; Stutzmann GE; LeDoux JE Learn Mem; 1996; 3(2-3):229-42. PubMed ID: 10456093 [TBL] [Abstract][Full Text] [Related]
14. NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. Bauer EP; Schafe GE; LeDoux JE J Neurosci; 2002 Jun; 22(12):5239-49. PubMed ID: 12077219 [TBL] [Abstract][Full Text] [Related]
15. Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: a biophysical modeling study. Kim D; Samarth P; Feng F; Pare D; Nair SS Brain Struct Funct; 2016 May; 221(4):2163-82. PubMed ID: 25859631 [TBL] [Abstract][Full Text] [Related]
16. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. McKernan MG; Shinnick-Gallagher P Nature; 1997 Dec; 390(6660):607-11. PubMed ID: 9403689 [TBL] [Abstract][Full Text] [Related]
17. stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Shumyatsky GP; Malleret G; Shin RM; Takizawa S; Tully K; Tsvetkov E; Zakharenko SS; Joseph J; Vronskaya S; Yin D; Schubart UK; Kandel ER; Bolshakov VY Cell; 2005 Nov; 123(4):697-709. PubMed ID: 16286011 [TBL] [Abstract][Full Text] [Related]
18. Learning and memory, part II: molecular mechanisms of synaptic plasticity. Lombroso P; Ogren M J Am Acad Child Adolesc Psychiatry; 2009 Jan; 48(1):5-9. PubMed ID: 19096295 [No Abstract] [Full Text] [Related]
19. Reactivation of fear memory renders consolidated amygdala synapses labile. Kim J; Song B; Hong I; Kim J; Lee J; Park S; Eom JY; Lee CJ; Lee S; Choi S J Neurosci; 2010 Jul; 30(28):9631-40. PubMed ID: 20631192 [TBL] [Abstract][Full Text] [Related]
20. A pathway-specific function for different AMPA receptor subunits in amygdala long-term potentiation and fear conditioning. Humeau Y; Reisel D; Johnson AW; Borchardt T; Jensen V; Gebhardt C; Bosch V; Gass P; Bannerman DM; Good MA; Hvalby Ø; Sprengel R; Lüthi A J Neurosci; 2007 Oct; 27(41):10947-56. PubMed ID: 17928436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]