BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 20573911)

  • 1. Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons.
    Martini FJ; Valdeolmillos M
    J Neurosci; 2010 Jun; 30(25):8660-70. PubMed ID: 20573911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarized increase of calcium and nucleokinesis in tangentially migrating neurons.
    Moya F; Valdeolmillos M
    Cereb Cortex; 2004 Jun; 14(6):610-8. PubMed ID: 15054076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elongator controls cortical interneuron migration by regulating actomyosin dynamics.
    Tielens S; Huysseune S; Godin JD; Chariot A; Malgrange B; Nguyen L
    Cell Res; 2016 Oct; 26(10):1131-1148. PubMed ID: 27670698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal control of nuclear migration in neurons and non-neuronal cells.
    Kengaku M
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(9):337-349. PubMed ID: 30416174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear.
    Bellion A; Baudoin JP; Alvarez C; Bornens M; Métin C
    J Neurosci; 2005 Jun; 25(24):5691-9. PubMed ID: 15958735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actomyosin pulls to advance the nucleus in a migrating tissue cell.
    Wu J; Kent IA; Shekhar N; Chancellor TJ; Mendonca A; Dickinson RB; Lele TP
    Biophys J; 2014 Jan; 106(1):7-15. PubMed ID: 24411232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actomyosin contractility spatiotemporally regulates actin network dynamics in migrating cells.
    Okeyo KO; Adachi T; Sunaga J; Hojo M
    J Biomech; 2009 Nov; 42(15):2540-8. PubMed ID: 19665125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graded actin filament polarity is the organization of oriented actomyosin II filament bundles required for fibroblast polarization.
    Mseka T; Coughlin M; Cramer LP
    Cell Motil Cytoskeleton; 2009 Sep; 66(9):743-53. PubMed ID: 19544402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration.
    Tang DD; Gerlach BD
    Respir Res; 2017 Apr; 18(1):54. PubMed ID: 28390425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons.
    Trivedi N; Ramahi JS; Karakaya M; Howell D; Kerekes RA; Solecki DJ
    Neural Dev; 2014 Dec; 9():26. PubMed ID: 25467954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local traction force in the proximal leading process triggers nuclear translocation during neuronal migration.
    Umeshima H; Nomura KI; Yoshikawa S; Hörning M; Tanaka M; Sakuma S; Arai F; Kaneko M; Kengaku M
    Neurosci Res; 2019 May; 142():38-48. PubMed ID: 29627503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice.
    Youn YH; Pramparo T; Hirotsune S; Wynshaw-Boris A
    J Neurosci; 2009 Dec; 29(49):15520-30. PubMed ID: 20007476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinesin Kif21b regulates radial migration of cortical projection neurons through a non-canonical function on actin cytoskeleton.
    Rivera Alvarez J; Asselin L; Tilly P; Benoit R; Batisse C; Richert L; Batisse J; Morlet B; Levet F; Schwaller N; Mély Y; Ruff M; Reymann AC; Godin JD
    Cell Rep; 2023 Jul; 42(7):112744. PubMed ID: 37418324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capture of microtubule plus-ends at the actin cortex promotes axophilic neuronal migration by enhancing microtubule tension in the leading process.
    Hutchins BI; Wray S
    Front Cell Neurosci; 2014; 8():400. PubMed ID: 25505874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Branching and nucleokinesis defects in migrating interneurons derived from doublecortin knockout mice.
    Kappeler C; Saillour Y; Baudoin JP; Tuy FP; Alvarez C; Houbron C; Gaspar P; Hamard G; Chelly J; Métin C; Francis F
    Hum Mol Genet; 2006 May; 15(9):1387-400. PubMed ID: 16571605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nesprins and opposing microtubule motors generate a point force that drives directional nuclear motion in migrating neurons.
    Wu YK; Umeshima H; Kurisu J; Kengaku M
    Development; 2018 Mar; 145(5):. PubMed ID: 29519888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential gene expression in migrating cortical interneurons during mouse forebrain development.
    Faux C; Rakic S; Andrews W; Yanagawa Y; Obata K; Parnavelas JG
    J Comp Neurol; 2010 Apr; 518(8):1232-48. PubMed ID: 20151419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p27(Kip1) is a microtubule-associated protein that promotes microtubule polymerization during neuron migration.
    Godin JD; Thomas N; Laguesse S; Malinouskaya L; Close P; Malaise O; Purnelle A; Raineteau O; Campbell K; Fero M; Moonen G; Malgrange B; Chariot A; Metin C; Besson A; Nguyen L
    Dev Cell; 2012 Oct; 23(4):729-44. PubMed ID: 23022035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random walk behavior of migrating cortical interneurons in the marginal zone: time-lapse analysis in flat-mount cortex.
    Tanaka DH; Yanagida M; Zhu Y; Mikami S; Nagasawa T; Miyazaki J; Yanagawa Y; Obata K; Murakami F
    J Neurosci; 2009 Feb; 29(5):1300-11. PubMed ID: 19193877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarity sorting drives remodeling of actin-myosin networks.
    Wollrab V; Belmonte JM; Baldauf L; Leptin M; Nédeléc F; Koenderink GH
    J Cell Sci; 2018 Dec; 132(4):. PubMed ID: 30404824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.