BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 20574055)

  • 61. Loss-of-function analysis reveals distinct requirements of the translation initiation factors eIF4E, eIF4E-3, eIF4G and eIF4G2 in Drosophila spermatogenesis.
    Ghosh S; Lasko P
    PLoS One; 2015; 10(4):e0122519. PubMed ID: 25849588
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microarray-based analysis of cell-cycle gene expression during spermatogenesis in the mouse.
    Roy Choudhury D; Small C; Wang Y; Mueller PR; Rebel VI; Griswold MD; McCarrey JR
    Biol Reprod; 2010 Oct; 83(4):663-75. PubMed ID: 20631398
    [TBL] [Abstract][Full Text] [Related]  

  • 63. mTOR signaling, function, novel inhibitors, and therapeutic targets.
    Watanabe R; Wei L; Huang J
    J Nucl Med; 2011 Apr; 52(4):497-500. PubMed ID: 21421716
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Methylation of the Gpat2 promoter regulates transient expression during mouse spermatogenesis.
    Garcia-Fabiani MB; Montanaro MA; Lacunza E; Cattaneo ER; Coleman RA; Pellon-Maison M; Gonzalez-Baro MR
    Biochem J; 2015 Oct; 471(2):211-20. PubMed ID: 26268560
    [TBL] [Abstract][Full Text] [Related]  

  • 65. RNA synthesis in spermatocytes and spermatids and preservation of meiotic RNA during spermiogenesis in the mouse.
    Geremia R; Boitani C; Conti M; Monesi V
    Cell Differ; 1977 Mar; 5(5-6):343-55. PubMed ID: 856479
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The dynamics of gene expression during and post meiosis sets the sperm agenda.
    Pandey A; Yadav SK; Vishvkarma R; Singh B; Maikhuri JP; Rajender S; Gupta G
    Mol Reprod Dev; 2019 Dec; 86(12):1921-1939. PubMed ID: 31589365
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Transcription of the TATA binding protein gene is highly up-regulated during spermatogenesis.
    Persengiev SP; Robert S; Kilpatrick DL
    Mol Endocrinol; 1996 Jun; 10(6):742-7. PubMed ID: 8776734
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of essential amino acids or glutamine deprivation on intestinal permeability and protein synthesis in HCT-8 cells: involvement of GCN2 and mTOR pathways.
    Boukhettala N; Claeyssens S; Bensifi M; Maurer B; Abed J; Lavoinne A; Déchelotte P; Coëffier M
    Amino Acids; 2012 Jan; 42(1):375-83. PubMed ID: 21113813
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Pyruvate dehydrogenase complex: mRNA and protein expression patterns of E1α subunit genes in human spermatogenesis.
    Pinheiro A; Silva MJ; Graça I; Silva J; Sá R; Sousa M; Barros A; Tavares de Almeida I; Rivera I
    Gene; 2012 Sep; 506(1):173-8. PubMed ID: 22750801
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Translational responses to growth factors and stress.
    Cully M; Downward J
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):284-8. PubMed ID: 19143647
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Expression of the Hprt gene during spermatogenesis: implications for sex-chromosome inactivation.
    Shannon M; Handel MA
    Biol Reprod; 1993 Oct; 49(4):770-8. PubMed ID: 8218641
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Coordinated control of the gene expression machinery.
    White RJ; Sharrocks AD
    Trends Genet; 2010 May; 26(5):214-20. PubMed ID: 20381190
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deregulated mTOR-mediated translation in intellectual disability.
    Troca-Marín JA; Alves-Sampaio A; Montesinos ML
    Prog Neurobiol; 2012 Feb; 96(2):268-82. PubMed ID: 22285767
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A novel eIF4G homolog, Off-schedule, couples translational control to meiosis and differentiation in Drosophila spermatocytes.
    Franklin-Dumont TM; Chatterjee C; Wasserman SA; Dinardo S
    Development; 2007 Aug; 134(15):2851-61. PubMed ID: 17611222
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rat pachytene spermatocytes down-regulate a polo-like kinase and up-regulate a thiol-specific antioxidant protein, whereas sertoli cells down-regulate a phosphodiesterase and up-regulate an oxidative stress protein after exposure to methoxyethanol and methoxyacetic acid.
    Syed V; Hecht NB
    Endocrinology; 1998 Aug; 139(8):3503-11. PubMed ID: 9681501
    [TBL] [Abstract][Full Text] [Related]  

  • 76. DNA polymerase-beta and poly(ADP)ribose polymerase mRNAs are differentially expressed during the development of male germinal cells.
    Alcivar AA; Hake LE; Hecht NB
    Biol Reprod; 1992 Feb; 46(2):201-7. PubMed ID: 1536896
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Importance of ERK1/2 in Regulation of Protein Translation during Oocyte Meiosis.
    Kalous J; Tetkova A; Kubelka M; Susor A
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29494492
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Functional transformation of the chromatoid body in mouse spermatids requires testis-specific serine/threonine kinases.
    Shang P; Baarends WM; Hoogerbrugge J; Ooms MP; van Cappellen WA; de Jong AA; Dohle GR; van Eenennaam H; Gossen JA; Grootegoed JA
    J Cell Sci; 2010 Feb; 123(Pt 3):331-9. PubMed ID: 20053632
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells.
    Kleene KC
    Mech Dev; 2001 Aug; 106(1-2):3-23. PubMed ID: 11472831
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Chromatoid body and small RNAs in male germ cells.
    Meikar O; Da Ros M; Korhonen H; Kotaja N
    Reproduction; 2011 Aug; 142(2):195-209. PubMed ID: 21652638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.