These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20574999)

  • 1. Water sorption induced transformations in crystalline solid surfaces: characterization by atomic force microscopy.
    Chen D; Haugstad G; Li ZJ; Suryanarayanan R
    J Pharm Sci; 2010 Sep; 99(9):4032-41. PubMed ID: 20574999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical stability of crystal hydrates and their anhydrates in the presence of excipients.
    Salameh AK; Taylor LS
    J Pharm Sci; 2006 Feb; 95(2):446-61. PubMed ID: 16380975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RH-temperature stability diagram of α- and β-anhydrous and monohydrate lactose crystalline forms.
    Allan MC; Grush E; Mauer LJ
    Food Res Int; 2020 Jan; 127():108717. PubMed ID: 31882085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of dynamic vapour sorption and near infra-red spectroscopy (DVS-NIR) to study the crystal transitions of theophylline and the report of a new solid-state transition.
    Vora KL; Buckton G; Clapham D
    Eur J Pharm Sci; 2004 Jun; 22(2-3):97-105. PubMed ID: 15158895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative humidity-temperature transition boundaries for anhydrous β-caffeine and caffeine hydrate crystalline forms.
    Allan MC; Owens B; Mauer LJ
    J Food Sci; 2020 Jun; 85(6):1815-1826. PubMed ID: 32449950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of water on the surface molecular mobility of poly(lactide) thin films: an atomic force microscopy study.
    Kikkawa Y; Fujita M; Abe H; Doi Y
    Biomacromolecules; 2004; 5(4):1187-93. PubMed ID: 15244429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surface characteristics of theophylline anhydrate powder on hygroscopic stability.
    Otsuka M; Kaneniwa N; Kawakami K; Umezawa O
    J Pharm Pharmacol; 1990 Sep; 42(9):606-10. PubMed ID: 1981897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RH-Temperature Stability Diagram of the Dihydrate, β-Anhydrate, and α-Anhydrate Forms of Crystalline Trehalose.
    Allan M; Chamberlain MC; Mauer LJ
    J Food Sci; 2019 Jun; 84(6):1465-1476. PubMed ID: 31042816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating theophylline monohydrate formation during high-shear wet granulation through improved understanding of the role of pharmaceutical excipients.
    Wikström H; Carroll WJ; Taylor LS
    Pharm Res; 2008 Apr; 25(4):923-35. PubMed ID: 17896097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RH-temperature phase diagrams of hydrate forming deliquescent crystalline ingredients.
    Allan M; Mauer LJ
    Food Chem; 2017 Dec; 236():21-31. PubMed ID: 28624086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of the crystallization of lactose from the amorphous state.
    Price R; Young PM
    J Pharm Sci; 2004 Jan; 93(1):155-64. PubMed ID: 14648645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing pseudopolymorphic transitions in pharmaceutical solids using Raman spectroscopy: hydration and dehydration of theophylline.
    Amado AM; Nolasco MM; Ribeiro-Claro PJ
    J Pharm Sci; 2007 May; 96(5):1366-79. PubMed ID: 17455358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of processing-induced phase transformations on the dissolution of theophylline tablets.
    Debnath S; Suryanarayanan R
    AAPS PharmSciTech; 2004 Feb; 5(1):E8. PubMed ID: 15198529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of microcrystals, micropuddles, and other spatial inhomogenieties in surface reactions under ambient conditions: an atomic force microscopy study of water and nitric acid adsorption on MgO(100) and CaCO3(104).
    Krueger BJ; Ross JL; Grassian VH
    Langmuir; 2005 Sep; 21(19):8793-801. PubMed ID: 16142962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the mechanism and parameters of hydrate formation and loss in glucose.
    Scholl SK; Schmidt SJ
    J Food Sci; 2014 Nov; 79(11):E2232-44. PubMed ID: 25308254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of glancing angle X-ray powder diffractometry to depth-profile phase transformations during dissolution of indomethacin and theophylline tablets.
    Debnath S; Predecki P; Suryanarayanan R
    Pharm Res; 2004 Jan; 21(1):149-59. PubMed ID: 14984270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of in situ atomic force microscopy to follow phase changes at crystal surfaces in real time.
    Thakuria R; Eddleston MD; Chow EH; Lloyd GO; Aldous BJ; Krzyzaniak JF; Bond AD; Jones W
    Angew Chem Int Ed Engl; 2013 Sep; 52(40):10541-4. PubMed ID: 23955996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of excipients in hydrate formation kinetics of theophylline in wet masses studied by near-infrared spectroscopy.
    Jørgensen AC; Airaksinen S; Karjalainen M; Luukkonen P; Rantanen J; Yliruusi J
    Eur J Pharm Sci; 2004 Sep; 23(1):99-104. PubMed ID: 15324927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation pathways of cocrystal hydrates when coformer modulates water activity.
    Jayasankar A; Roy L; Rodríguez-Hornedo N
    J Pharm Sci; 2010 Sep; 99(9):3977-85. PubMed ID: 20623694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the Distribution of Water in a Multi-Component System by Solid-State NMR Spectroscopy.
    Mistry P; Chakravarty P; Lubach JW
    Pharm Res; 2016 Oct; 33(10):2470-80. PubMed ID: 27324960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.