These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 20575118)
1. Hydrolysis of organophosphate esters: phosphotriesterase activity of metallo-beta-lactamase and its functional mimics. Tamilselvi A; Mugesh G Chemistry; 2010 Aug; 16(29):8878-86. PubMed ID: 20575118 [TBL] [Abstract][Full Text] [Related]
2. Theoretical study of the phosphotriesterase reaction mechanism. Chen SL; Fang WH; Himo F J Phys Chem B; 2007 Feb; 111(6):1253-5. PubMed ID: 17253743 [TBL] [Abstract][Full Text] [Related]
3. Antibiotic resistance: mono- and dinuclear zinc complexes as metallo-beta-lactamase mimics. Tamilselvi A; Nethaji M; Mugesh G Chemistry; 2006 Oct; 12(30):7797-806. PubMed ID: 16906495 [TBL] [Abstract][Full Text] [Related]
4. Metallo-β-lactamase-catalyzed hydrolysis of cephalosporins: some mechanistic insights into the effect of heterocyclic thiones on enzyme activity. Tamilselvi A; Mugesh G Inorg Chem; 2011 Feb; 50(3):749-56. PubMed ID: 21210647 [TBL] [Abstract][Full Text] [Related]
5. Zinc(II) tweezers containing artificial peptides mimicking the active site of phosphotriesterase: the catalyzed hydrolysis of the toxic organophosphate parathion. Ibrahim MM; Mersal GA J Inorg Biochem; 2010 Nov; 104(11):1195-204. PubMed ID: 20719392 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. Fabiane SM; Sohi MK; Wan T; Payne DJ; Bateson JH; Mitchell T; Sutton BJ Biochemistry; 1998 Sep; 37(36):12404-11. PubMed ID: 9730812 [TBL] [Abstract][Full Text] [Related]
7. Evolution of phosphotriesterase activities of the metallo-β-lactamase family: A theoretical study. Zhang H; Yang L; Yan LF; Liao RZ; Tian WQ J Inorg Biochem; 2018 Jul; 184():8-14. PubMed ID: 29635098 [TBL] [Abstract][Full Text] [Related]
8. The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold. González JM; Medrano Martín FJ; Costello AL; Tierney DL; Vila AJ J Mol Biol; 2007 Nov; 373(5):1141-56. PubMed ID: 17915249 [TBL] [Abstract][Full Text] [Related]
10. Activation of the binuclear metal center through formation of phosphotriesterase-inhibitor complexes. Samples CR; Raushel FM; DeRose VJ Biochemistry; 2007 Mar; 46(11):3435-42. PubMed ID: 17315951 [TBL] [Abstract][Full Text] [Related]
12. Positively cooperative binding of zinc ions to Bacillus cereus 569/H/9 beta-lactamase II suggests that the binuclear enzyme is the only relevant form for catalysis. Jacquin O; Balbeur D; Damblon C; Marchot P; De Pauw E; Roberts GC; Frère JM; Matagne A J Mol Biol; 2009 Oct; 392(5):1278-91. PubMed ID: 19665032 [TBL] [Abstract][Full Text] [Related]
13. Metal content and localization during turnover in B. cereus metallo-beta-lactamase. Llarrull LI; Tioni MF; Vila AJ J Am Chem Soc; 2008 Nov; 130(47):15842-51. PubMed ID: 18980306 [TBL] [Abstract][Full Text] [Related]
14. Structure of a Novel Phosphotriesterase from Sphingobium sp. TCM1: A Familiar Binuclear Metal Center Embedded in a Seven-Bladed β-Propeller Protein Fold. Mabanglo MF; Xiang DF; Bigley AN; Raushel FM Biochemistry; 2016 Jul; 55(28):3963-74. PubMed ID: 27353520 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional models of the active site of zinc phosphotriesterase. Carlsson H; Haukka M; Nordlander E Inorg Chem; 2004 Sep; 43(18):5681-7. PubMed ID: 15332820 [TBL] [Abstract][Full Text] [Related]
16. Update on biochemical properties of recombinant Pseudomonas diminuta phosphotriesterase. Carletti E; Jacquamet L; Loiodice M; Rochu D; Masson P; Nachon F J Enzyme Inhib Med Chem; 2009 Aug; 24(4):1045-55. PubMed ID: 19548794 [TBL] [Abstract][Full Text] [Related]
17. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism. Davies AM; Rasia RM; Vila AJ; Sutton BJ; Fabiane SM Biochemistry; 2005 Mar; 44(12):4841-9. PubMed ID: 15779910 [TBL] [Abstract][Full Text] [Related]
18. Interrogation of the Substrate Profile and Catalytic Properties of the Phosphotriesterase from Sphingobium sp. Strain TCM1: An Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants and Plasticizers. Xiang DF; Bigley AN; Ren Z; Xue H; Hull KG; Romo D; Raushel FM Biochemistry; 2015 Dec; 54(51):7539-49. PubMed ID: 26629649 [TBL] [Abstract][Full Text] [Related]
19. Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus. Dal Peraro M; Vila AJ; Carloni P Proteins; 2004 Feb; 54(3):412-23. PubMed ID: 14747990 [TBL] [Abstract][Full Text] [Related]
20. Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase. Chantalat L; Duée E; Galleni M; Frère JM; Dideberg O Protein Sci; 2000 Jul; 9(7):1402-6. PubMed ID: 10933508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]