These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 20575569)
1. Neutron and beta/gamma radiolysis of water up to supercritical conditions. 2. SF(6) as a scavenger for hydrated electron. Haygarth K; Bartels DM J Phys Chem A; 2010 Jul; 114(28):7479-84. PubMed ID: 20575569 [TBL] [Abstract][Full Text] [Related]
2. Neutron and beta/gamma radiolysis of water up to supercritical conditions. 1. beta/gamma yields for H(2), H(.) atom, and hydrated electron. Janik D; Janik I; Bartels DM J Phys Chem A; 2007 Aug; 111(32):7777-86. PubMed ID: 17645317 [TBL] [Abstract][Full Text] [Related]
3. Hydrated electron yields in the heavy ion radiolysis of water. Laverne JA; Stefanić I; Pimblott SM J Phys Chem A; 2005 Oct; 109(42):9393-401. PubMed ID: 16866387 [TBL] [Abstract][Full Text] [Related]
4. Solvated electron extinction coefficient and oscillator strength in high temperature water. Hare PM; Price EA; Stanisky CM; Janik I; Bartels DM J Phys Chem A; 2010 Feb; 114(4):1766-75. PubMed ID: 20058903 [TBL] [Abstract][Full Text] [Related]
5. Effect of water density on the absorption maximum of hydrated electrons in sub- and supercritical water up to 400 degrees C. Jay-Gerin JP; Lin M; Katsumura Y; He H; Muroya Y; Meesungnoen J J Chem Phys; 2008 Sep; 129(11):114511. PubMed ID: 19044973 [TBL] [Abstract][Full Text] [Related]
6. Time-dependent yield of the hydrated electron in subcritical and supercritical water studied by ultrafast pulse radiolysis and Monte-Carlo simulation. Muroya Y; Sanguanmith S; Meesungnoen J; Lin M; Yan Y; Katsumura Y; Jay-Gerin JP Phys Chem Chem Phys; 2012 Nov; 14(41):14325-33. PubMed ID: 23007023 [TBL] [Abstract][Full Text] [Related]
7. Reaction of the hydroxyl radical with phenol in water up to supercritical conditions. Bonin J; Janik I; Janik D; Bartels DM J Phys Chem A; 2007 Mar; 111(10):1869-78. PubMed ID: 17311365 [TBL] [Abstract][Full Text] [Related]
8. Formation of a sandwich-structure assisted, relatively long-lived sulfur-centered three-electron bonded radical anion in the reduction of a bis(1-substituted-uracilyl) disulfide in aqueous solution. Wenska G; Filipiak P; Asmus KD; Bobrowski K; Koput J; Marciniak B J Phys Chem B; 2008 Aug; 112(32):10045-53. PubMed ID: 18646807 [TBL] [Abstract][Full Text] [Related]
9. An apparatus for the study of high temperature water radiolysis in a nuclear reactor: calibration of dose in a mixed neutron/gamma radiation field. Edwards EJ; Wilson PP; Anderson MH; Mezyk SP; Pimblott SM; Bartels DM Rev Sci Instrum; 2007 Dec; 78(12):124101. PubMed ID: 18163737 [TBL] [Abstract][Full Text] [Related]
10. Self-radiolysis of tritiated water. 4. The scavenging effect of azide ions (N Sanguanmith S; Meesungnoen J; Stuart CR; Causey P; Jay-Gerin JP RSC Adv; 2018 Jan; 8(5):2449-2458. PubMed ID: 35541471 [TBL] [Abstract][Full Text] [Related]
11. Reductive halogen elimination from phenols by organic radicals in aqueous solutions; chain reaction induced by proton-coupled electron transfer. Matasović B; Bonifacić M J Phys Chem A; 2007 Sep; 111(35):8622-8. PubMed ID: 17696504 [TBL] [Abstract][Full Text] [Related]
12. High-LET radiolysis of liquid water with 1H+, 4He2+, 12C6+, and 20Ne9+ ions: effects of multiple ionization. Meesungnoen J; Jay-Gerin JP J Phys Chem A; 2005 Jul; 109(29):6406-19. PubMed ID: 16833985 [TBL] [Abstract][Full Text] [Related]
13. Density dependence of the yield of hydrated electrons in the low-LET radiolysis of supercritical water at 400 °C: influence of the geminate recombination of subexcitation-energy electrons prior to thermalization. Meesungnoen J; Sanguanmith S; Jay-Gerin JP Phys Chem Chem Phys; 2013 Oct; 15(39):16450-5. PubMed ID: 23999799 [TBL] [Abstract][Full Text] [Related]
14. Dimethylselenide as a probe for reactions of halogenated alkoxyl radicals in aqueous solution. Degradation of dichloro- and dibromomethane. Makogon O; Flyunt R; Tobien T; Naumov S; Bonifacić M J Phys Chem A; 2008 Jul; 112(26):5908-16. PubMed ID: 18540662 [TBL] [Abstract][Full Text] [Related]
15. Pulse radiolysis study on free radical scavenger edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one). Lin M; Katsumura Y; Hata K; Muroya Y; Nakagawa K J Photochem Photobiol B; 2007 Nov; 89(1):36-43. PubMed ID: 17822914 [TBL] [Abstract][Full Text] [Related]
16. An atmospheric pressure chemical ionization study of the positive and negative ion chemistry of the hydrofluorocarbons 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a) and of perfluoro-n-hexane (FC-72) in air plasma at atmospheric pressure. Marotta E; Paradisi C; Scorrano G J Mass Spectrom; 2004 Jul; 39(7):791-801. PubMed ID: 15282758 [TBL] [Abstract][Full Text] [Related]
17. Yields of hydroxyl radical and hydrated electron scavenging reactions in aqueous solutions of biological interest. LaVerne JA; Pimblott SM Radiat Res; 1993 Jul; 135(1):16-23. PubMed ID: 8392212 [TBL] [Abstract][Full Text] [Related]
18. Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction. Lee J; Song W; Jang SS; Fortner JD; Alvarez PJ; Cooper WJ; Kim JH Environ Sci Technol; 2010 May; 44(10):3786-92. PubMed ID: 20397700 [TBL] [Abstract][Full Text] [Related]
19. Radiolysis of aqueous solutions of 1,1- and 1,2-dichloroethane. Pimblott SM; Milosavljevic BH; Laverne JA J Phys Chem A; 2005 Nov; 109(45):10294-301. PubMed ID: 16833324 [TBL] [Abstract][Full Text] [Related]
20. Decomposition and mineralization of cefaclor by ionizing radiation: kinetics and effects of the radical scavengers. Yu S; Lee B; Lee M; Cho IH; Chang SW Chemosphere; 2008 May; 71(11):2106-12. PubMed ID: 18308367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]