BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20576299)

  • 21. Predictive force programming in the grip-lift task: the role of memory links between arbitrary cues and object weight.
    Ameli M; Dafotakis M; Fink GR; Nowak DA
    Neuropsychologia; 2008; 46(9):2383-8. PubMed ID: 18455203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Botulinum toxin to treat upper-limb spasticity in hemiparetic patients: grasp strategies and kinematics of reach-to-grasp movements.
    Bensmail D; Robertson J; Fermanian C; Roby-Brami A
    Neurorehabil Neural Repair; 2010 Feb; 24(2):141-51. PubMed ID: 19786722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The potentiation of two components of the reach-to-grasp action during object categorisation in visual memory.
    Derbyshire N; Ellis R; Tucker M
    Acta Psychol (Amst); 2006 May; 122(1):74-98. PubMed ID: 16376844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.
    Tang R; Whitwell RL; Goodale MA
    Cognition; 2015 May; 138():49-63. PubMed ID: 25704582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A common first-order time-to-contact based control of hand-closure initiation in catching and grasping.
    van de Kamp C; Bongers RM; Zaal FT
    Hum Mov Sci; 2012 Jun; 31(3):529-40. PubMed ID: 21868116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Grasping actions remap peripersonal space.
    Brozzoli C; Pavani F; Urquizar C; Cardinali L; Farnè A
    Neuroreport; 2009 Jul; 20(10):913-7. PubMed ID: 19512951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated control of hand transport and orientation during prehension movements.
    Desmurget M; Prablanc C; Arzi M; Rossetti Y; Paulignan Y; Urquizar C
    Exp Brain Res; 1996 Jul; 110(2):265-78. PubMed ID: 8836690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interference from distractors in reach-to-grasp movements.
    Kritikos A; Bennett KM; Dunai J; Castiello U
    Q J Exp Psychol A; 2000 Feb; 53(1):131-51. PubMed ID: 10718067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nondominant-to-dominant hand interference in bimanual movements is facilitated by gradual visuomotor perturbation.
    Kagerer FA
    Neuroscience; 2016 Mar; 318():94-103. PubMed ID: 26779835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Saccadic eye movements in a high-speed bimanual stacking task: changes of attentional control during learning and automatization.
    Foerster RM; Carbone E; Koesling H; Schneider WX
    J Vis; 2011 Jun; 11(7):9. PubMed ID: 21665985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Role of Visual and Haptic Feedback During Dynamically Coupled Bimanual Manipulation.
    Contu S; Hughes CM; Masia L
    IEEE Trans Haptics; 2016; 9(4):536-547. PubMed ID: 27655023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective perturbation of visual input during prehension movements. 1. The effects of changing object position.
    Paulignan Y; MacKenzie C; Marteniuk R; Jeannerod M
    Exp Brain Res; 1991; 83(3):502-12. PubMed ID: 2026193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hand, eye, and head coordination while pointing to perturbed targets.
    Carnahan H; Marteniuk RG
    J Mot Behav; 1994 Jun; 26(2):135-46. PubMed ID: 15753066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influences of task complexity, object location, and object type on hand selection in reaching in left and right-handed children and adults.
    Bryden PJ; Mayer M; Roy EA
    Dev Psychobiol; 2011 Jan; 53(1):47-58. PubMed ID: 20812232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perturbations in action goal influence bimanual grasp posture planning.
    Hughes CM; Seegelke C
    J Mot Behav; 2013; 45(6):473-8. PubMed ID: 24006878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visual perception modifies goal-directed movement control: supporting evidence from a visual perturbation paradigm.
    Proteau L; Masson G
    Q J Exp Psychol A; 1997 Nov; 50(4):726-41. PubMed ID: 9450378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of lower peripheral visual cues in the visuomotor coordination of locomotion and prehension.
    Graci V
    Gait Posture; 2011 Oct; 34(4):514-8. PubMed ID: 21807520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inter-ocular and intra-ocular integration during prehension.
    Hansen S; Hayes S; Bennett SJ
    Neurosci Lett; 2011 Jan; 487(1):17-21. PubMed ID: 20888393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interlimb coordination during a cooperative bimanual object manipulation task.
    Hughes CM; Mäueler B; Tepper H; Seegelke C
    Laterality; 2013; 18(6):693-709. PubMed ID: 23439109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Attention-dependent switching between intrinsic-muscle and extrinsic-visual coordinates during bimanual movements.
    Sakurada T; Kansaku K
    Eur J Neurosci; 2021 Mar; 53(6):1922-1937. PubMed ID: 33378590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.