These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20576620)

  • 41. Site-Directed Cross-Linking Between Bacterial Flagellar Motor Proteins In Vivo.
    Terashima H; Homma M; Kojima S
    Methods Mol Biol; 2023; 2646():71-82. PubMed ID: 36842107
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of a conserved prolyl residue (Pro173) of MotA in the mechanochemical reaction cycle of the proton-driven flagellar motor of Salmonella.
    Nakamura S; Morimoto YV; Kami-ike N; Minamino T; Namba K
    J Mol Biol; 2009 Oct; 393(2):300-7. PubMed ID: 19683537
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of the periplasmic domain of MotB and implications for its role in the stator assembly of the bacterial flagellar motor.
    Kojima S; Furukawa Y; Matsunami H; Minamino T; Namba K
    J Bacteriol; 2008 May; 190(9):3314-22. PubMed ID: 18310339
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The flagellar motor protein FliL forms a scaffold of circumferentially positioned rings required for stator activation.
    Tachiyama S; Chan KL; Liu X; Hathroubi S; Peterson B; Khan MF; Ottemann KM; Liu J; Roujeinikova A
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046042
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exchange of rotor components in functioning bacterial flagellar motor.
    Fukuoka H; Inoue Y; Terasawa S; Takahashi H; Ishijima A
    Biochem Biophys Res Commun; 2010 Mar; 394(1):130-5. PubMed ID: 20184859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium.
    Takekawa N; Terahara N; Kato T; Gohara M; Mayanagi K; Hijikata A; Onoue Y; Kojima S; Shirai T; Namba K; Homma M
    Sci Rep; 2016 Aug; 6():31526. PubMed ID: 27531865
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cross-linking and disulfide bond formation of introduced cysteine residues suggest a modified model for the tertiary structure of URF13 in the pore-forming oligomers.
    Rhoads DM; Brunner-Neuenschwander B; Levings CS; Siedow JN
    Arch Biochem Biophys; 1998 Jun; 354(1):158-64. PubMed ID: 9633611
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of intracellular pH on the torque-speed relationship of bacterial proton-driven flagellar motor.
    Nakamura S; Kami-ike N; Yokota JP; Kudo S; Minamino T; Namba K
    J Mol Biol; 2009 Feb; 386(2):332-8. PubMed ID: 19133273
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Helices VII and X in the lactose permease of Escherichia coli: proximity and ligand-induced distance changes.
    Zhang W; Guan L; Kaback HR
    J Mol Biol; 2002 Jan; 315(1):53-62. PubMed ID: 11771965
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conformational change in the stator of the bacterial flagellar motor.
    Kojima S; Blair DF
    Biochemistry; 2001 Oct; 40(43):13041-50. PubMed ID: 11669642
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure of MotA, a flagellar stator protein, from hyperthermophile.
    Nishikino T; Takekawa N; Tran DP; Kishikawa JI; Hirose M; Onoe S; Kojima S; Homma M; Kitao A; Kato T; Imada K
    Biochem Biophys Res Commun; 2022 Nov; 631():78-85. PubMed ID: 36179499
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MotP Subunit is Critical for Ion Selectivity and Evolution of a K
    Naganawa S; Ito M
    Biomolecules; 2020 Apr; 10(5):. PubMed ID: 32365619
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli.
    Lloyd SA; Blair DF
    J Mol Biol; 1997 Mar; 266(4):733-44. PubMed ID: 9102466
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dimeric interaction between the cytoplasmic domains of the Na+/H+ exchanger NHE1 revealed by symmetrical intermolecular cross-linking and selective co-immunoprecipitation.
    Hisamitsu T; Pang T; Shigekawa M; Wakabayashi S
    Biochemistry; 2004 Aug; 43(34):11135-43. PubMed ID: 15323573
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of speed modulation (chemokinesis) in the unidirectional rotary motor of Sinorhizobium meliloti.
    Attmannspacher U; Scharf B; Schmitt R
    Mol Microbiol; 2005 May; 56(3):708-18. PubMed ID: 15819626
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Helix rotation model of the flagellar rotary motor.
    Schmitt R
    Biophys J; 2003 Aug; 85(2):843-52. PubMed ID: 12885632
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of PomA periplasmic loop and sodium ion entering in stator complex of sodium-driven flagellar motor.
    Nishikino T; Iwatsuki H; Mino T; Kojima S; Homma M
    J Biochem; 2020 Apr; 167(4):389-398. PubMed ID: 31738405
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor.
    Kojima S
    Curr Opin Microbiol; 2015 Dec; 28():66-71. PubMed ID: 26457925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Roles of charged residues in the C-terminal region of PomA, a stator component of the Na+-driven flagellar motor.
    Obara M; Yakushi T; Kojima S; Homma M
    J Bacteriol; 2008 May; 190(10):3565-71. PubMed ID: 18326582
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism of Stator Assembly and Incorporation into the Flagellar Motor.
    Kojima S
    Methods Mol Biol; 2017; 1593():147-159. PubMed ID: 28389951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.