These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20577035)

  • 1. Electrical impedance characterization of normal and cancerous human hepatic tissue.
    Laufer S; Ivorra A; Reuter VE; Rubinsky B; Solomon SB
    Physiol Meas; 2010 Jul; 31(7):995-1009. PubMed ID: 20577035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues.
    Halter RJ; Hartov A; Paulsen KD; Schned A; Heaney J
    Physiol Meas; 2008 Jun; 29(6):S111-23. PubMed ID: 18544804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe.
    O'Rourke AP; Lazebnik M; Bertram JM; Converse MC; Hagness SC; Webster JG; Mahvi DM
    Phys Med Biol; 2007 Aug; 52(15):4707-19. PubMed ID: 17634659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioelectrical parameters of the whole human body obtained through bioelectrical impedance analysis.
    Lafargue AL; Cabrales LB; Larramendi RM
    Bioelectromagnetics; 2002 Sep; 23(6):450-4. PubMed ID: 12210563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical impedance spectroscopy of the human prostate.
    Halter RJ; Hartov A; Heaney JA; Paulsen KD; Schned AR
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1321-7. PubMed ID: 17605363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.
    Ahmed M; Liu Z; Humphries S; Goldberg SN
    Int J Hyperthermia; 2008 Nov; 24(7):577-88. PubMed ID: 18608580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison study of electrodes for neonate electrical impedance tomography.
    Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R
    Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient factors affecting thermal lesion size with an impedance-based radiofrequency ablation system.
    Glaiberman CB; Pilgram TK; Brown DB
    J Vasc Interv Radiol; 2005 Oct; 16(10):1341-8. PubMed ID: 16221905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the temperature-dependent electric conductivity of liver tissue ex vivo and in vivo: Importance for therapy planning for the radiofrequency ablation of liver tumours.
    Zurbuchen U; Holmer C; Lehmann KS; Stein T; Roggan A; Seifarth C; Buhr HJ; Ritz JP
    Int J Hyperthermia; 2010 Feb; 26(1):26-33. PubMed ID: 20100050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transthoracic impedance study with large self-adhesive electrodes in two conventional positions for defibrillation.
    Krasteva V; Matveev M; Mudrov N; Prokopova R
    Physiol Meas; 2006 Oct; 27(10):1009-22. PubMed ID: 16951460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo imaging of irreversible electroporation by means of electrical impedance tomography.
    Granot Y; Ivorra A; Maor E; Rubinsky B
    Phys Med Biol; 2009 Aug; 54(16):4927-43. PubMed ID: 19641242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.
    Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome.
    Ivorra A; Al-Sakere B; Rubinsky B; Mir LM
    Phys Med Biol; 2009 Oct; 54(19):5949-63. PubMed ID: 19759406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. Second section: impedance spectrometry.
    Rigaud B; Morucci JP; Chauveau N
    Crit Rev Biomed Eng; 1996; 24(4-6):257-351. PubMed ID: 9196884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy.
    Han A; Yang L; Frazier AB
    Clin Cancer Res; 2007 Jan; 13(1):139-43. PubMed ID: 17200348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods of optimization of electrical impedance tomography for imaging tissue electroporation.
    Granot Y; Rubinsky B
    Physiol Meas; 2007 Oct; 28(10):1135-47. PubMed ID: 17906383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ex vivo electrical impedance measurements on excised hepatic tissue from human patients with metastatic colorectal cancer.
    Prakash S; Karnes MP; Sequin EK; West JD; Hitchcock CL; Nichols SD; Bloomston M; Abdel-Misih SR; Schmidt CR; Martin EW; Povoski SP; Subramaniam VV
    Physiol Meas; 2015 Feb; 36(2):315-28. PubMed ID: 25597963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical impedance scanning in breast tumor imaging: correlation with the growth pattern of lesion.
    Wang K; Wang T; Fu F; Ji ZY; Liu RG; Liao QM; Dong XZ
    Chin Med J (Engl); 2009 Jul; 122(13):1501-6. PubMed ID: 19719937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical impedance myography at frequencies up to 2 MHz.
    Shiffman CA; Kashuri H; Aaron R
    Physiol Meas; 2008 Jun; 29(6):S345-63. PubMed ID: 18544820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct reconstruction of tissue parameters from differential multifrequency EIT in vivo.
    Mayer M; Brunner P; Merwa R; Smolle-Jüttner FM; Maier A; Scharfetter H
    Physiol Meas; 2006 May; 27(5):S93-101. PubMed ID: 16636423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.