These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20577318)

  • 1. Examination of temperature effects on the lasing characteristics of rhodamine cw dye lasers.
    Ali MA; Moghaddasi J; Ahmed SA
    Appl Opt; 1990 Sep; 29(27):3945-9. PubMed ID: 20577318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Powerful single-frequency ring dye laser spanning the visible spectrum.
    Johnston TF; Brady RH; Proffitt W
    Appl Opt; 1982 Jul; 21(13):2307-16. PubMed ID: 20396027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photostability of lasing process from water solution of Rhodamine 6G with gold nanoparticles.
    Dong L; Ye F; Chughtai A; Popov S; Friberg AT; Muhammed M
    Opt Lett; 2012 Jan; 37(1):34-6. PubMed ID: 22212782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fixed-wavelength operation of a copper-laser-pumped dye laser injection seeded by low-power He-Ne lasers.
    Ainsworth MD; Glover AC; Piper JA
    Appl Opt; 1995 Sep; 34(27):6108-13. PubMed ID: 21060450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient red-edge materials photosensitized by Rhodamine 640.
    Garcia-Moreno I; Costela A; Pintado-Sierra M; Martin V; Sastre R
    J Phys Chem B; 2009 Aug; 113(31):10611-8. PubMed ID: 19591505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect on the ultrastructure of dental enamel of excimer-dye, argon-ion and CO2 lasers.
    Palamara J; Phakey PP; Orams HJ; Rachinger WA
    Scanning Microsc; 1992 Dec; 6(4):1061-70; discussion 1070-1. PubMed ID: 1295076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of two-photon fluorescence for Rhodamine 6G in microbubble resonators.
    Cohoon GA; Kieu K; Norwood RA
    Opt Lett; 2014 Jun; 39(11):3098-101. PubMed ID: 24875986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lasing with well-defined cavity modes in dye-infiltrated silica inverse opals.
    Nishijima Y; Ueno K; Juodkazis S; Mizeikis V; Fujiwara H; Sasaki K; Misawa H
    Opt Express; 2009 Feb; 17(4):2976-83. PubMed ID: 19219202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Characteristics of laser light].
    Takac S; Stojanović S
    Med Pregl; 1999; 52(1-2):29-34. PubMed ID: 10352501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence and Time-Delayed Lasing during Single Laser Pulse Excitation of a Pendant mm-Sized Dye Droplet.
    Boni M; Andrei IR; Pascu ML; Staicu A
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real time random laser properties of Rhodamine-doped di-ureasil hybrids.
    Pecoraro E; García-Revilla S; Ferreira RA; Balda R; Carlos LD; Fernández J
    Opt Express; 2010 Mar; 18(7):7470-8. PubMed ID: 20389769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent plasma nanocomposite thin films containing nonaggregated rhodamine 6G laser dye molecules.
    Barranco A; Groening P
    Langmuir; 2006 Aug; 22(16):6719-22. PubMed ID: 16863208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pneumatically tunable optofluidic DFB dye laser using corrugated sidewalls.
    Sano T; Black J; Mitchell S; Zhang H; Schmidt H
    Opt Lett; 2020 Nov; 45(21):5978-5981. PubMed ID: 33137048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cutaneous side effects from laser treatment of the skin: skin cancer, scars, wounds, pigmentary changes, and purpura--use of pulsed dye laser, copper vapor laser, and argon laser.
    Haedersdal M
    Acta Derm Venereol Suppl (Stockh); 1999; 207():1-32. PubMed ID: 10605602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal effects in thin-film organic solid-state lasers.
    Zhao Z; Mhibik O; Leang T; Forget S; Chénais S
    Opt Express; 2014 Dec; 22(24):30092-107. PubMed ID: 25606938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency laser Doppler measurements using multiaxial-mode lasers.
    Dopheide D; Durst F
    Appl Opt; 1981 May; 20(9):1557-70. PubMed ID: 20309350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective random laser action in Rhodamine 6G solution with Al nanoparticles.
    Yang L; Feng G; Yi J; Yao K; Deng G; Zhou S
    Appl Opt; 2011 May; 50(13):1816-21. PubMed ID: 21532657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface temperature distributions in carbon dioxide, argon, and KTP (Nd:YAG) laser ablated otic capsule and calvarial bone.
    Wong BJ; Neev J; van Gemert MJ
    Am J Otol; 1997 Nov; 18(6):766-72. PubMed ID: 9391675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of submicrometer-sized particles on microdroplet lasing.
    Armstrong RL; Xie JG; Ruekgauer TE; Gu J; Pinnick RG
    Opt Lett; 1993 Jan; 18(2):119-21. PubMed ID: 19802057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single mode optofluidic distributed feedback dye laser.
    Li Z; Zhang Z; Emery T; Scherer A; Psaltis D
    Opt Express; 2006 Jan; 14(2):696-701. PubMed ID: 19503387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.