These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 20577490)

  • 21. [An experimental study of excimer laser angioplasty in vitro].
    Wang DW; Yu S; Wu TG
    Zhonghua Xin Xue Guan Bing Za Zhi; 1989 Apr; 17(2):83-5, 126. PubMed ID: 2529110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Factors influencing ablation of atherosclerotic plaque with argon laser.
    Chen DX; Zheng DS; Zhang SH; Wu YX; Bao SH; Xia LL
    Chin Med J (Engl); 1991 Apr; 104(4):330-5. PubMed ID: 2065552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laser-induced fluorescence detection of atherosclerotic plaque with hematoporphyrin derivative used as an exogenous probe.
    Prevosti LG; Wynne JJ; Becker CG; Linsker R; Shires GT
    J Vasc Surg; 1988 Apr; 7(4):500-6. PubMed ID: 2965255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new procedure for evaluating smoothness of corneal surface following 193-nanometer excimer laser ablation.
    Liang FQ; Geasey SD; del Cerro M; Aquavella JV
    Refract Corneal Surg; 1992; 8(6):459-65. PubMed ID: 1493119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excimer, Ho:YAG, and Q-switched Ho:YAG ablation of aorta: a comparison of temperatures and tissue damage in vitro.
    Jansen ED; Le TH; Welch AJ
    Appl Opt; 1993 Feb; 32(4):526-34. PubMed ID: 20802720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Spatial fluorescence imaging of atherosclerotic plaque: contrast enhancement by 2 wavelength laser stimulation, digital image processing and dye marking].
    Ischinger T; Pesarini AC; Baumgartner R; Coppenrath K; Stepp H; Unsöld E
    Z Kardiol; 1991 Mar; 80(3):207-14. PubMed ID: 1829291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescence spectroscopic and histochemical analysis using hematoporphyrin as a microenvironmental probe for atherosclerotic change in the human aorta.
    Machida M; Kameyama K; Asano G; Kumazaki T
    Lab Invest; 1999 Jun; 79(6):733-45. PubMed ID: 10378516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement depth of laser-induced tissue fluorescence with application to laser angioplasty.
    Gmitro AF; Cutruzzola FW; Stetz ML; Deckelbaum LI
    Appl Opt; 1988 May; 27(9):1844-9. PubMed ID: 20531665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laser-induced fluorescence spectra of the HgZn excimer: Transitions involving the E0(-), A1, A0(-), and B0(-) states.
    Hegazi E; Supronowicz J; Atkinson JB; Krause L
    Phys Rev A; 1990 Sep; 42(5):2734-2740. PubMed ID: 9904342
    [No Abstract]   [Full Text] [Related]  

  • 30. Laser-induced fluorescence from the E1 and F1 states of the HgZn excimer.
    Hegazi E; Supronowicz J; Chambaud G; Atkinson JB; Baylis WE; Krause L
    Phys Rev A Gen Phys; 1989 Dec; 40(11):6293-6299. PubMed ID: 9902020
    [No Abstract]   [Full Text] [Related]  

  • 31. Laser-induced fluorescence spectroscopy of the Hg3 excimer.
    Niefer RJ; Supronowicz J; Atkinson JB; Krause L
    Phys Rev A Gen Phys; 1986 Sep; 34(3):2483-2485. PubMed ID: 9897541
    [No Abstract]   [Full Text] [Related]  

  • 32. Laser-induced fluorescence of Hg2 H1u excimer molecules.
    Niefer RJ; Supronowicz J; Atkinson JB; Krause L
    Phys Rev A Gen Phys; 1986 Aug; 34(2):1137-1142. PubMed ID: 9897373
    [No Abstract]   [Full Text] [Related]  

  • 33. Laser-induced fluorescence from the F0(-) state of the HgZn excimer.
    Hegazi E; Supronowicz J; Atkinson JB; Krause L
    Phys Rev A; 1990 Sep; 42(5):2745-2750. PubMed ID: 9904344
    [No Abstract]   [Full Text] [Related]  

  • 34. Predissociation and pooling effects in the laser-induced fluorescence spectrum of the HgZn excimer.
    Hegazi E; Supronowicz J; Atkinson JB; Krause L
    Phys Rev A; 1990 Sep; 42(5):2741-2744. PubMed ID: 9904343
    [No Abstract]   [Full Text] [Related]  

  • 35. Control of excimer laser aided tissue ablation via laser-induced fluorescence monitoring.
    Papazoglou TG; Papaioannou T; Arakawa K; Fishbein M; Marmarelis VZ; Grundfest WS
    Appl Opt; 1990 Nov; 29(33):4950-5. PubMed ID: 20577490
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of excimer laser (308 nm) ablation of the human lens nucleus in air and saline with a fiber optic delivery system.
    Martinez M; Maguen E; Bardenstein D; Duffy M; Yoser S; Papaioannou T; Grundfest W
    Refract Corneal Surg; 1992; 8(5):368-74. PubMed ID: 1450118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. XeCl excimer laser-induced fluorescence for selective ablation of atheromatous tissue.
    Arakawa K; Papazoglou T; Papaioannou T; Shi WQ; Fishbein M; Litvack F; Forrester JS; Grundfest WS
    Jpn Circ J; 1991 Nov; 55(11):1094-105. PubMed ID: 1749069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [An experimental study of excimer laser angioplasty].
    Ogino H
    Nihon Geka Hokan; 1992 Mar; 61(2):168-89. PubMed ID: 1530386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occurrence and magnitude of pressure waves during Er:YAG laser ablation of atherosclerotic tissue: comparison to XeCl excimer laser ablation.
    Rose CH; Haase KK; Wehrmann M; Karsch KR
    Lasers Surg Med; 1996; 19(3):273-83. PubMed ID: 8923423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Excimer laser-induced simultaneous ablation and spectral identification of normal and atherosclerotic arterial tissue layers.
    Laufer G; Wollenek G; Hohla K; Horvat R; Henke KH; Buchelt M; Wutzl G; Wolner E
    Circulation; 1988 Oct; 78(4):1031-9. PubMed ID: 2971471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.