These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2057758)

  • 61. A physiologically based toxicokinetic model for dietary uptake of hydrophobic organic compounds by fish: II. simulation of chronic exposure scenarios.
    Nichols JW; Fitzsimmons PN; Whiteman FW
    Toxicol Sci; 2004 Feb; 77(2):219-29. PubMed ID: 14657516
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Application of QSTRs in the selection of a surrogate toxicity value for a chemical of concern.
    Moudgal CJ; Venkatapathy R; Choudhury H; Bruce RM; Lipscomb JC
    Environ Sci Technol; 2003 Nov; 37(22):5228-35. PubMed ID: 14655712
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Development of the fragment constant method for estimating the partition coefficients of nonionic organic mixtures.
    Lin Z; Yu H; Gao S; Cheng J; Wang L
    Arch Environ Contam Toxicol; 2001 Oct; 41(3):255-60. PubMed ID: 11503060
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Good modeling practice guidelines for applying multimedia models in chemical assessments.
    Buser AM; MacLeod M; Scheringer M; Mackay D; Bonnell M; Russell MH; DePinto JV; Hungerbühler K
    Integr Environ Assess Manag; 2012 Oct; 8(4):703-8. PubMed ID: 22318971
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biological exposure indicators: quantification of biological variability using toxicokinetic modeling.
    Truchon G; Tardif R; Droz PO; Charest-Tardif G; Pierrehumbert G
    J Occup Environ Hyg; 2006 Mar; 3(3):137-43. PubMed ID: 16464817
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Guidance on the selection of efficient computational methods for multimedia fate models.
    Semplice M; Ghirardello D; Morselli M; Di Guardo A
    Environ Sci Technol; 2012 Feb; 46(3):1616-23. PubMed ID: 22191534
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The priority list of environmental chemical hazards in Poland.
    Dutkiewicz T
    Sci Total Environ; 1991 Jan; 101(1-2):153-8. PubMed ID: 2057765
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biomonitoring equivalents: a screening approach for interpreting biomonitoring results from a public health risk perspective.
    Hays SM; Becker RA; Leung HW; Aylward LL; Pyatt DW
    Regul Toxicol Pharmacol; 2007 Feb; 47(1):96-109. PubMed ID: 17030369
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stoffenmanager exposure model: company-specific exposure assessments using a Bayesian methodology.
    van de Ven P; Fransman W; Schinkel J; Rubingh C; Warren N; Tielemans E
    J Occup Environ Hyg; 2010 Apr; 7(4):216-23. PubMed ID: 20146134
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Development of the method and U.S. normalization database for Life Cycle Impact Assessment and sustainability metrics.
    Bare J; Gloria T; Norris G
    Environ Sci Technol; 2006 Aug; 40(16):5108-15. PubMed ID: 16955915
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [The concept of the development of the state of chemical-analytical environmental monitoring].
    Rakhmanin IuA; Malysheva AG
    Gig Sanit; 2013; (6):4-9. PubMed ID: 24624812
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Prevalence of mutagens in the environment: experimental data versus simulations.
    Rosenkranz HS; Cunningham AR
    Mutat Res; 2001 Dec; 484(1-2):49-51. PubMed ID: 11733070
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Chemicals in ecosystems. Inventory, evaluation and application of distribution models].
    Figge K; Klahn J; Koch J
    Schriftenr Ver Wasser Boden Lufthyg; 1985; 61():1-234. PubMed ID: 4048872
    [No Abstract]   [Full Text] [Related]  

  • 74. Environmental information system for visualizing environmental impact assessment information.
    Cserny A; Kovács Z; Domokos E; Rédey A
    Environ Sci Pollut Res Int; 2009 Jan; 16(1):36-41. PubMed ID: 19034543
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Case study on health risk assessment based on site-specific conceptual model].
    Zhong MS; Jiang L; Yao JJ; Xia TX; Zhu XY; Han D; Zhang LN
    Huan Jing Ke Xue; 2013 Feb; 34(2):647-52. PubMed ID: 23668136
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A framework for assessing cumulative effects in watersheds: an introduction to Canadian case studies.
    Dubé MG; Duinker P; Greig L; Carver M; Servos M; McMaster M; Noble B; Schreier H; Jackson L; Munkittrick KR
    Integr Environ Assess Manag; 2013 Jul; 9(3):363-9. PubMed ID: 23553957
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Application of mixed effects models for characterizing contaminated sites.
    Shoari N; Dubé JS
    Chemosphere; 2017 Jan; 166():380-388. PubMed ID: 27705825
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Matthew Effect and widely prescribed pharmaceuticals lacking environmental monitoring: case study of an exposure-assessment vulnerability.
    Daughton CG
    Sci Total Environ; 2014 Jan; 466-467():315-25. PubMed ID: 23911922
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [A criteria system in comprehensive assessment of environmental chemical pollutant hazards].
    Krasovskiĭ GN; Avaliani SL; Zholdakova ZI; Kosiakov VV
    Gig Sanit; 1992; (9-10):15-7. PubMed ID: 1427221
    [No Abstract]   [Full Text] [Related]  

  • 80. An integrated exposure assessment of phthalates for the general population in China based on both exposure scenario and biomonitoring estimation approaches.
    Cao Y; Liu J; Liu Y; Wang J; Hao X
    Regul Toxicol Pharmacol; 2016 Feb; 74():34-41. PubMed ID: 26654930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.