These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 20577634)

  • 1. Biocompatibility of intracortical microelectrodes: current status and future prospects.
    Marin C; Fernández E
    Front Neuroeng; 2010; 3():8. PubMed ID: 20577634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects.
    Fernández E; Greger B; House PA; Aranda I; Botella C; Albisua J; Soto-Sánchez C; Alfaro A; Normann RA
    Front Neuroeng; 2014; 7():24. PubMed ID: 25100989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the neuron-electrode interface for chronic bioelectronic interfacing.
    Keogh C
    Neurosurg Focus; 2020 Jul; 49(1):E7. PubMed ID: 32610294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The progress in researches on biocompatibility for direct brain-machine interface].
    Luo P; Xie G; Jiang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Dec; 24(6):1416-8. PubMed ID: 18232506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Reconnecting the Hand and Arm with Brain (ReHAB) Commentary on "An Integrated Brain-Machine Interface Platform With Thousands of Channels".
    Kirsch RF; Ajiboye AB; Miller JP
    J Med Internet Res; 2019 Oct; 21(10):e16339. PubMed ID: 31674921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain.
    Golabchi A; Woeppel KM; Li X; Lagenaur CF; Cui XT
    Biosens Bioelectron; 2020 May; 155():112096. PubMed ID: 32090868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants.
    De Faveri S; Maggiolini E; Miele E; De Angelis F; Cesca F; Benfenati F; Fadiga L
    Front Neuroeng; 2014; 7():7. PubMed ID: 24782757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of organic and inorganic biomaterials for neural interfaces.
    Fattahi P; Yang G; Kim G; Abidian MR
    Adv Mater; 2014 Mar; 26(12):1846-85. PubMed ID: 24677434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications.
    Jorfi M; Skousen JL; Weder C; Capadona JR
    J Neural Eng; 2015 Feb; 12(1):011001. PubMed ID: 25460808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress and challenges of implantable neural interfaces based on nature-derived materials.
    Redolfi Riva E; Micera S
    Bioelectron Med; 2021 Apr; 7(1):6. PubMed ID: 33902750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfabricated intracortical extracellular matrix-microelectrodes for improving neural interfaces.
    Shen W; Das S; Vitale F; Richardson A; Ananthakrishnan A; Struzyna LA; Brown DP; Song N; Ramkumar M; Lucas T; Cullen DK; Litt B; Allen MG
    Microsyst Nanoeng; 2018; 4():30. PubMed ID: 31057918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monolayer Graphene Coating of Intracortical Probes for Long-Lasting Neural Activity Monitoring.
    Bourrier A; Shkorbatova P; Bonizzato M; Rey E; Barraud Q; Courtine G; Othmen R; Reita V; Bouchiat V; Delacour C
    Adv Healthc Mater; 2019 Sep; 8(18):e1801331. PubMed ID: 31402600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NanoPt-A Nanostructured Electrode Coating for Neural Recording and Microstimulation.
    Boehler C; Vieira DM; Egert U; Asplund M
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14855-14865. PubMed ID: 32162910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience.
    Schroeder KE; Chestek CA
    Front Neurosci; 2016; 10():291. PubMed ID: 27445663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural prostheses in clinical practice: biomedical microsystems in neurological rehabilitation.
    Stieglitz T
    Acta Neurochir Suppl; 2007; 97(Pt 1):411-8. PubMed ID: 17691404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-inflammatory Approaches to Mitigate the Neuroinflammatory Response to Brain-Dwelling Intracortical Microelectrodes.
    Bedell HW; Capadona JR
    J Immunol Sci; 2018; 2(4):15-21. PubMed ID: 30854523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.