These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 20577634)

  • 21. Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience.
    Schroeder KE; Chestek CA
    Front Neurosci; 2016; 10():291. PubMed ID: 27445663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anti-inflammatory Approaches to Mitigate the Neuroinflammatory Response to Brain-Dwelling Intracortical Microelectrodes.
    Bedell HW; Capadona JR
    J Immunol Sci; 2018; 2(4):15-21. PubMed ID: 30854523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural prostheses in clinical practice: biomedical microsystems in neurological rehabilitation.
    Stieglitz T
    Acta Neurochir Suppl; 2007; 97(Pt 1):411-8. PubMed ID: 17691404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing.
    Piret G; Hébert C; Mazellier JP; Rousseau L; Scorsone E; Cottance M; Lissorgues G; Heuschkel MO; Picaud S; Bergonzo P; Yvert B
    Biomaterials; 2015 Jun; 53():173-83. PubMed ID: 25890717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Home Use of a Percutaneous Wireless Intracortical Brain-Computer Interface by Individuals With Tetraplegia.
    Simeral JD; Hosman T; Saab J; Flesher SN; Vilela M; Franco B; Kelemen JN; Brandman DM; Ciancibello JG; Rezaii PG; Eskandar EN; Rosler DM; Shenoy KV; Henderson JM; Nurmikko AV; Hochberg LR
    IEEE Trans Biomed Eng; 2021 Jul; 68(7):2313-2325. PubMed ID: 33784612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants.
    Yang W; Gong Y; Li W
    Front Bioeng Biotechnol; 2020; 8():622923. PubMed ID: 33585422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Electrode-Site Placement in the Long-Term Stability of Intracortical Microstimulation.
    Saldanha RL; Urdaneta ME; Otto KJ
    Front Neurosci; 2021; 15():712578. PubMed ID: 34566563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting CD14 on blood derived cells improves intracortical microelectrode performance.
    Bedell HW; Hermann JK; Ravikumar M; Lin S; Rein A; Li X; Molinich E; Smith PD; Selkirk SM; Miller RH; Sidik S; Taylor DM; Capadona JR
    Biomaterials; 2018 May; 163():163-173. PubMed ID: 29471127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.
    Rebesco JM; Miller LE
    Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracortical recording interfaces: current challenges to chronic recording function.
    Gunasekera B; Saxena T; Bellamkonda R; Karumbaiah L
    ACS Chem Neurosci; 2015 Jan; 6(1):68-83. PubMed ID: 25587704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pHEMA Encapsulated PEDOT-PSS-CNT Microsphere Microelectrodes for Recording Single Unit Activity in the Brain.
    Castagnola E; Maggiolini E; Ceseracciu L; Ciarpella F; Zucchini E; De Faveri S; Fadiga L; Ricci D
    Front Neurosci; 2016; 10():151. PubMed ID: 27147944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peptide modification of polyimide-insulated microwires: Towards improved biocompatibility through reduced glial scarring.
    Sridar S; Churchward MA; Mushahwar VK; Todd KG; Elias AL
    Acta Biomater; 2017 Sep; 60():154-166. PubMed ID: 28735029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-vitro evaluation of the long-term stability of PEDOT:PSS coated microelectrodes for chronic recording and electrical stimulation of neurons.
    Schander A; Tesmann T; Strokov S; Stemmann H; Kreiter AK; Lang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6174-6177. PubMed ID: 28269662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Utah intracortical Electrode Array: a recording structure for potential brain-computer interfaces.
    Maynard EM; Nordhausen CT; Normann RA
    Electroencephalogr Clin Neurophysiol; 1997 Mar; 102(3):228-39. PubMed ID: 9129578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient.
    Szymanski LJ; Kellis S; Liu CY; Jones KT; Andersen RA; Commins D; Lee B; McCreery DB; Miller CA
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34314384
    [No Abstract]   [Full Text] [Related]  

  • 37. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces.
    Moxon KA; Hallman S; Aslani A; Kalkhoran NM; Lelkes PI
    J Biomater Sci Polym Ed; 2007; 18(10):1263-81. PubMed ID: 17939885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite element analysis of the current-density and electric field generated by metal microelectrodes.
    McIntyre CC; Grill WM
    Ann Biomed Eng; 2001 Mar; 29(3):227-35. PubMed ID: 11310784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.
    Vitale F; Summerson SR; Aazhang B; Kemere C; Pasquali M
    ACS Nano; 2015; 9(4):4465-74. PubMed ID: 25803728
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.