These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20577755)

  • 1. Corneal flap assessment with Rondo microkeratome in laser in situ keratomileusis.
    Paschalis EI; Aristeidou AP; Foudoulakis NC; Razis LA
    Graefes Arch Clin Exp Ophthalmol; 2011 Feb; 249(2):289-95. PubMed ID: 20577755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser in situ keratomileusis flap-thickness predictability with a pendular microkeratome.
    Paschalis EI; Labiris G; Aristeidou AP; Foudoulakis NC; Koukoula SC; Kozobolis VP
    J Cataract Refract Surg; 2011 Dec; 37(12):2160-6. PubMed ID: 21996515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting laser in situ keratomileusis flap thickness: comparison of 2 microkeratome heads.
    Mimouni M; Nemet AY; Levartovsky S; Sela T; Munzer G; Kaiserman I
    J Cataract Refract Surg; 2015 Feb; 41(2):348-53. PubMed ID: 25661128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corneal flap thickness with the Moria M2 microkeratome and Med-Logics calibrated LASIK blades.
    Pietilä J; Huhtala A; Mäkinen P; Seppänen M; Jääskeläinen M; Uusitalo H
    Acta Ophthalmol; 2009 Nov; 87(7):754-8. PubMed ID: 19456311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of intraoperative subtraction pachymetry and postoperative anterior segment optical coherence tomography of laser in situ keratomileusis flaps.
    Murakami Y; Manche EE
    J Cataract Refract Surg; 2011 Oct; 37(10):1879-83. PubMed ID: 21840682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictability of corneal flap thickness in laser in situ keratomileusis using a 200 kHz femtosecond laser.
    Cummings AB; Cummings BK; Kelly GE
    J Cataract Refract Surg; 2013 Mar; 39(3):378-85. PubMed ID: 23352500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thin flap laser in situ keratomileusis: flap dimensions with the Moria LSK-One manual microkeratome using the 100-microm head.
    Duffey RJ
    J Cataract Refract Surg; 2005 Jun; 31(6):1159-62. PubMed ID: 16039490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparison of cornea flap made by femtosecond laser and microkeratome in laser in situ keratomileusis].
    Lian JC; Zhang SS; Zhang J; Ye S
    Zhonghua Yan Ke Za Zhi; 2013 Apr; 49(4):305-8. PubMed ID: 23900088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flap and stromal bed thickness in laser in situ keratomileusis enhancement.
    Muallem MS; Yoo SH; Romano AC; Marangon FB; Schiffman JC; Culbertson WW
    J Cataract Refract Surg; 2004 Nov; 30(11):2295-302. PubMed ID: 15519078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the Ziemer FEMTO LDV femtosecond laser and Moria M2 mechanical microkeratome.
    Zhou Y; Zhang J; Tian L; Zhai C
    J Refract Surg; 2012 Mar; 28(3):189-94. PubMed ID: 22373033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flap characteristics, predictability, and safety of the Ziemer FEMTO LDV femtosecond laser with the disposable suction ring for LASIK.
    Pietilä J; Huhtala A; Mäkinen P; Uusitalo H
    Eye (Lond); 2014 Jan; 28(1):66-71. PubMed ID: 24232315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of corneal flap morphology using AS-OCT in LASIK with the WaveLight FS200 femtosecond laser versus a mechanical microkeratome.
    Zhang Y; Chen YG; Xia YJ
    J Refract Surg; 2013 May; 29(5):320-4. PubMed ID: 23659230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of corneal flap thickness achieved by two different age MK-2000 microkeratomes.
    Hsu SY; Liu YL; Chang MS; Lin CP
    Eye (Lond); 2009 Dec; 23(12):2200-5. PubMed ID: 19218995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal flap thickness in laser in situ keratomileusis using the summit Krumeich-Barraquer microkeratome.
    Uçakhan OO
    J Cataract Refract Surg; 2002 May; 28(5):798-804. PubMed ID: 11978458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography.
    von Jagow B; Kohnen T
    J Cataract Refract Surg; 2009 Jan; 35(1):35-41. PubMed ID: 19101422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry eye associated with laser in situ keratomileusis: Mechanical microkeratome versus femtosecond laser.
    Salomão MQ; Ambrósio R; Wilson SE
    J Cataract Refract Surg; 2009 Oct; 35(10):1756-60. PubMed ID: 19781472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anterior segment optical coherence tomography measurement of flap thickness after myopic LASIK using the Moria one use-plus microkeratome.
    Chen HJ; Xia YJ; Zhong YY; Song XL; Chen YG
    J Refract Surg; 2010 Jun; 26(6):403-10. PubMed ID: 20677727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of corneal flap thickness between primary eyes and fellow eyes using the Zyoptix XP microkeratome.
    Ho T; Cheng AC; Lau S; Lam DS
    J Cataract Refract Surg; 2007 Dec; 33(12):2049-53. PubMed ID: 18053902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser in situ keratomileusis flap thickness using the Hansatome microkeratome with zero compression heads.
    Taneri S
    J Cataract Refract Surg; 2006 Jan; 32(1):72-7. PubMed ID: 16516782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corneal flap thickness in laser in situ keratomileusis using the Moria M2 microkeratome.
    Muallem MS; Yoo SY; Romano AC; Schiffman JC; Culbertson WW
    J Cataract Refract Surg; 2004 Sep; 30(9):1902-8. PubMed ID: 15342053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.