These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20578746)

  • 81. Electrochemical synthesis of gold nanocrystals and their 1D and 2D organization.
    Huang S; Ma H; Zhang X; Yong F; Feng X; Pan W; Wang X; Wang Y; Chen S
    J Phys Chem B; 2005 Oct; 109(42):19823-30. PubMed ID: 16853563
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Synthesis and self-assembly of highly monodispersed quasispherical gold nanoparticles.
    Huang Y; Kim DH
    Langmuir; 2011 Nov; 27(22):13861-7. PubMed ID: 21985465
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Engineering a well-ordered, functional protein-gold nanoparticle assembly.
    Cheung-Lau JC; Liu D; Pulsipher KW; Liu W; Dmochowski IJ
    J Inorg Biochem; 2014 Jan; 130():59-68. PubMed ID: 24176920
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Experimental examination of the characteristics of bright-field scanning confocal electron microscopy images.
    Hashimoto A; Mitsuishi K; Shimojo M; Zhu Y; Takeguchi M
    J Electron Microsc (Tokyo); 2011; 60(3):227-34. PubMed ID: 21486860
    [TBL] [Abstract][Full Text] [Related]  

  • 85. NIST gold nanoparticle reference materials do not induce oxidative DNA damage.
    Nelson BC; Petersen EJ; Marquis BJ; Atha DH; Elliott JT; Cleveland D; Watson SS; Tseng IH; Dillon A; Theodore M; Jackman J
    Nanotoxicology; 2013 Feb; 7(1):21-9. PubMed ID: 22047053
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis.
    Takale BS; Bao M; Yamamoto Y
    Org Biomol Chem; 2014 Apr; 12(13):2005-27. PubMed ID: 24525525
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Selective and efficient magnetic separation of Pb2+ via gold nanoparticle-based visual binding enrichment.
    Zheng Q; Han C; Li H
    Chem Commun (Camb); 2010 Oct; 46(39):7337-9. PubMed ID: 20820546
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Fabrication of gold nanorod arrays by templating from porous alumina.
    Losic D; Shapter JG; Mitchell JG; Voelcker NH
    Nanotechnology; 2005 Oct; 16(10):2275-81. PubMed ID: 20818007
    [TBL] [Abstract][Full Text] [Related]  

  • 89. 3D visualization of TiO2 nanocrystals in mesoporous nanocomposite using energy filtered transmission electron microscopy tomography.
    Gondo T; Kasama T; Kaneko K
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i27. PubMed ID: 25359825
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Controlled microwave-assisted growth of silica nanoparticles under acid catalysis.
    Lovingood DD; Owens JR; Seeber M; Kornev KG; Luzinov I
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6875-83. PubMed ID: 23182127
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Gold nanoparticles elevate plasma testosterone levels in male mice without affecting fertility.
    Li WQ; Wang F; Liu ZM; Wang YC; Wang J; Sun F
    Small; 2013 May; 9(9-10):1708-14. PubMed ID: 22911975
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Adsorption-Coupled Diffusion of Gold Nanoclusters within a Large-Pore Protein Crystal Scaffold.
    Hartje LF; Munsky B; Ni TW; Ackerson CJ; Snow CD
    J Phys Chem B; 2017 Aug; 121(32):7652-7659. PubMed ID: 28714685
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Radiolysis of water in nanoporous gold.
    Musat R; Moreau S; Poidevin F; Mathon MH; Pommeret S; Renault JP
    Phys Chem Chem Phys; 2010 Oct; 12(39):12868-74. PubMed ID: 20830389
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Nanoscale analysis of the interaction between cyanoacrylate and vacuum metal deposition in the development of latent fingermarks on low-density polyethylene.
    Jones BJ; Downham R; Sears VG
    J Forensic Sci; 2012 Jan; 57(1):196-200. PubMed ID: 22074186
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Quantifying Competitive Degradation Processes in Supported Nanocatalyst Systems.
    Horwath JP; Voorhees PW; Stach EA
    Nano Lett; 2021 Jun; 21(12):5324-5329. PubMed ID: 34109786
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Exploring the potential of metallic nanoparticles within synthetic biology.
    Edmundson MC; Capeness M; Horsfall L
    N Biotechnol; 2014 Dec; 31(6):572-8. PubMed ID: 24681407
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Diffusion in hierarchical mesoporous materials: applicability and generalization of the fast-exchange diffusion model.
    Zeigermann P; Naumov S; Mascotto S; Kärger J; Smarsly BM; Valiullin R
    Langmuir; 2012 Feb; 28(7):3621-32. PubMed ID: 22260082
    [TBL] [Abstract][Full Text] [Related]  

  • 98. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance.
    Pedireddy S; Lee HK; Tjiu WW; Phang IY; Tan HR; Chua SQ; Troadec C; Ling XY
    Nat Commun; 2014 Sep; 5():4947. PubMed ID: 25229456
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Photothermal laser microsintering of nanoporous gold.
    Schade L; Franzka S; Mathieu M; Biener MM; Biener J; Hartmann N
    Langmuir; 2014 Jun; 30(24):7190-7. PubMed ID: 24869898
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Ultrasmall Particle Sizes of Walnut-Like Mesoporous Silica Nanospheres with Unique Large Pores and Tunable Acidity for Hydrogenating Reaction.
    Hu D; Li H; Mei J; Liu C; Meng Q; Xiao C; Wang G; Shi Y; Duan A
    Small; 2020 Jul; 16(29):e2002091. PubMed ID: 32567241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.