These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20578762)

  • 1. Role of specific components from commercial inactive dry yeast winemaking preparations on the growth of wine lactic acid bacteria.
    Andújar-Ortiz I; Pozo-Bayón MA; García-Ruiz A; Moreno-Arribas MV
    J Agric Food Chem; 2010 Jul; 58(14):8392-9. PubMed ID: 20578762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactic acid bacteria in the quality improvement and depreciation of wine.
    Lonvaud-Funel A
    Antonie Van Leeuwenhoek; 1999; 76(1-4):317-31. PubMed ID: 10532386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wine volatile and amino acid composition after malolactic fermentation: effect of Oenococcus oeni and Lactobacillus plantarum starter cultures.
    Pozo-Bayón MA; G-Alegría E; Polo MC; Tenorio C; Martín-Alvarez PJ; Calvo de la Banda MT; Ruiz-Larrea F; Moreno-Arribas MV
    J Agric Food Chem; 2005 Nov; 53(22):8729-35. PubMed ID: 16248578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharomyces cerevisiae-Oenococcus oeni interactions in wine: current knowledge and perspectives.
    Alexandre H; Costello PJ; Remize F; Guzzo J; Guilloux-Benatier M
    Int J Food Microbiol; 2004 Jun; 93(2):141-54. PubMed ID: 15135953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of yeast mannoproteins and grape polysaccharides on the growth of wine lactic acid and acetic acid bacteria.
    Diez L; Guadalupe Z; Ayestarán B; Ruiz-Larrea F
    J Agric Food Chem; 2010 Jul; 58(13):7731-9. PubMed ID: 20553034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of the inhibitory effects of wine polyphenols on the growth of enological lactic acid bacteria.
    García-Ruiz A; Moreno-Arribas MV; Martín-Álvarez PJ; Bartolomé B
    Int J Food Microbiol; 2011 Feb; 145(2-3):426-31. PubMed ID: 21295882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivity and antimicrobial action of bovine lactoferrin derived peptides against wine lactic acid bacteria.
    Enrique M; Manzanares P; Yuste M; Martínez M; Vallés S; Marcos JF
    Food Microbiol; 2009 May; 26(3):340-6. PubMed ID: 19269579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential inoculation versus co-inoculation in Cabernet Franc wine fermentation.
    Cañas PM; Romero EG; Pérez-Martín F; Seseña S; Palop ML
    Food Sci Technol Int; 2015 Apr; 21(3):203-12. PubMed ID: 24583599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular screening of wine lactic acid bacteria degrading hydroxycinnamic acids.
    de las Rivas B; Rodríguez H; Curiel JA; Landete JM; Muñoz R
    J Agric Food Chem; 2009 Jan; 57(2):490-4. PubMed ID: 19099460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of arc genes related with the ethyl carbamate precursors in wine lactic acid bacteria.
    Araque I; Gil J; Carreté R; Bordons A; Reguant C
    J Agric Food Chem; 2009 Mar; 57(5):1841-7. PubMed ID: 19219988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria.
    Rojo-Bezares B; Sáenz Y; Zarazaga M; Torres C; Ruiz-Larrea F
    Int J Food Microbiol; 2007 May; 116(1):32-6. PubMed ID: 17320991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between Oenococcus oeni and Lactobacillus hilgardii isolated from wine. Modification of available nitrogen and biogenic amine production.
    Aredes Fernández PA; Farías ME; de Nadra MC
    Biotechnol Lett; 2010 Aug; 32(8):1095-102. PubMed ID: 20361233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetaldehyde metabolism by wine lactic acid bacteria.
    Osborne JP; Mira de Orduña R; Pilone GJ; Liu SQ
    FEMS Microbiol Lett; 2000 Oct; 191(1):51-5. PubMed ID: 11004399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of nitrogen limitation and nature of the feed upon Oenococcus oeni metabolism and extracellular protein production.
    Remize F; Augagneur Y; Guilloux-Benatier M; Guzzo J
    J Appl Microbiol; 2005; 98(3):652-61. PubMed ID: 15715868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the essential nutrient requirements of wine-related bacteria from the genera Oenococcus and Lactobacillus.
    Terrade N; Mira de Orduña R
    Int J Food Microbiol; 2009 Jul; 133(1-2):8-13. PubMed ID: 19446351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of oenological lactic acid bacteria (Lactobacillus hilgardii and Pediococcus pentosaceus) by wine phenolic compounds.
    García-Ruiz A; Bartolomé B; Cueva C; Martín-Alvarez PJ; Moreno-Arribas MV
    J Appl Microbiol; 2009 Sep; 107(3):1042-53. PubMed ID: 19486417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inventory and monitoring of wine microbial consortia.
    Renouf V; Claisse O; Lonvaud-Funel A
    Appl Microbiol Biotechnol; 2007 May; 75(1):149-64. PubMed ID: 17235561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth response and modifications of organic nitrogen compounds in pure and mixed cultures of lactic acid bacteria from wine.
    Fernández PA; de Nadra MC
    Curr Microbiol; 2006 Feb; 52(2):86-91. PubMed ID: 16467990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA fingerprinting analysis of Oenococcus oeni strains under wine conditions.
    Marques AP; San Romão MV; Tenreiro R
    Food Microbiol; 2012 Sep; 31(2):238-45. PubMed ID: 22608229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of yeast proteolytic activity on Oenococcus oeni and malolactic fermentation.
    Guilloux-Benatier M; Remize F; Gal L; Guzzo J; Alexandre H
    FEMS Microbiol Lett; 2006 Oct; 263(2):183-8. PubMed ID: 16978354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.