These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20578783)

  • 1. A method for analyzing the stability of the resting state for a model of pacemaker cells surrounded by stable cells.
    Artebrant R; Tveito A; Lines GT
    Math Biosci Eng; 2010 Jul; 7(3):505-26. PubMed ID: 20578783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A condition for setting off ectopic waves in computational models of excitable cells.
    Tveito A; Lines GT
    Math Biosci; 2008 Jun; 213(2):141-50. PubMed ID: 18539188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cluster synchronization and spatio-temporal dynamics in networks of oscillatory and excitable Luo-Rudy cells.
    Kanakov OI; Osipov GV; Chan CK; Kurths J
    Chaos; 2007 Mar; 17(1):015111. PubMed ID: 17411268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative filament tension in the Luo-Rudy model of cardiac tissue.
    Alonso S; Panfilov AV
    Chaos; 2007 Mar; 17(1):015102. PubMed ID: 17411259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient numerical technique for the solution of the monodomain and bidomain equations.
    Whiteley JP
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A note on a method for determining advantageous properties of an anti-arrhythmic drug based on a mathematical model of cardiac cells.
    Tveito A; Lines GT
    Math Biosci; 2009 Feb; 217(2):167-73. PubMed ID: 19135068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standing waves in the FitzHugh-Nagumo model of cardiac electrical activity.
    Dauby PC; Desaive T; Croisier H; Kolh P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021908. PubMed ID: 16605363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-current model for the dynamics of cardiac membrane.
    Mitchell CC; Schaeffer DG
    Bull Math Biol; 2003 Sep; 65(5):767-93. PubMed ID: 12909250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling excitable cells using cycle-linear hybrid automata.
    Ye P; Entcheva E; Smolka SA; Grosu R
    IET Syst Biol; 2008 Jan; 2(1):24-32. PubMed ID: 18248083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An unconditionally stable numerical method for the Luo-Rudy 1 model used in simulations of defibrillation.
    Hanslien M; Sundnes J; Tveito A
    Math Biosci; 2007 Aug; 208(2):375-92. PubMed ID: 17306311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization phenomena in mixed media of passive, excitable, and oscillatory cells.
    Kryukov AK; Petrov VS; Averyanova LS; Osipov GV; Chen W; Drugova O; Chan CK
    Chaos; 2008 Sep; 18(3):037129. PubMed ID: 19045503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic Fitzhugh-Nagumo models.
    Bini D; Cherubini C; Filippi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041929. PubMed ID: 16383442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of 1-D models of cardiac pacemaker heterogeneity.
    Cloherty SL; Dokos S; Lovell NH
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):164-77. PubMed ID: 16485745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity.
    Spiteri RJ; Dean RC
    IEEE Trans Biomed Eng; 2008 May; 55(5):1488-95. PubMed ID: 18440894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Algorithm study on the three-dimensional cardiac tissue based on the model of ventricular action potential].
    Zhang H; Ming L; Jin Y; Li M; Zhang Z; Lin Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Feb; 27(1):1-5. PubMed ID: 20337013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient integration of a realistic two-dimensional cardiac tissue model by domain decomposition.
    Quan W; Evans SJ; Hastings HM
    IEEE Trans Biomed Eng; 1998 Mar; 45(3):372-85. PubMed ID: 9509753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effective control of excitable waves in 2D cardiac excitable media].
    Li L; Liu L; Zhang G; Wang G; Qu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1104-7. PubMed ID: 16422076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.
    Nash MP; Panfilov AV
    Prog Biophys Mol Biol; 2004; 85(2-3):501-22. PubMed ID: 15142759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.