BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 20578812)

  • 1. Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia.
    Giordano MA; Gutierrez G; Rinaldi C
    Int J Hyperthermia; 2010; 26(5):475-84. PubMed ID: 20578812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method.
    Golneshan AA; Lahonian M
    Int J Hyperthermia; 2011; 27(3):266-74. PubMed ID: 21501028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study on the multi-region bio-heat equation to model magnetic fluid hyperthermia (MFH) using low Curie temperature nanoparticles.
    Zhang C; Johnson DT; Brazel CS
    IEEE Trans Nanobioscience; 2008 Dec; 7(4):267-75. PubMed ID: 19203870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method.
    Lahonian M; Golneshan AA
    IEEE Trans Nanobioscience; 2011 Dec; 10(4):262-8. PubMed ID: 22271797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment.
    Bagaria HG; Johnson DT
    Int J Hyperthermia; 2005 Feb; 21(1):57-75. PubMed ID: 15764351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution to the bioheat equation for hyperthermia with La(1-x)Ag(y)MnO(3-delta) nanoparticles: the effect of temperature autostabilization.
    Atsarkin VA; Levkin LV; Posvyanskiy VS; Melnikov OV; Markelova MN; Gorbenko OY; Kaul AR
    Int J Hyperthermia; 2009 May; 25(3):240-7. PubMed ID: 19437239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia.
    Kandala SK; Liapi E; Whitcomb LL; Attaluri A; Ivkov R
    Int J Hyperthermia; 2019; 36(1):115-129. PubMed ID: 30541354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern.
    Salloum M; Ma R; Zhu L
    Int J Hyperthermia; 2009 Jun; 25(4):309-21. PubMed ID: 19670098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia.
    Latorre M; Rinaldi C
    P R Health Sci J; 2009 Sep; 28(3):227-38. PubMed ID: 19715115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo.
    Jordan A; Scholz R; Wust P; Fähling H; Krause J; Wlodarczyk W; Sander B; Vogl T; Felix R
    Int J Hyperthermia; 1997; 13(6):587-605. PubMed ID: 9421741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse techniques in hyperthermia: a sensitivity study.
    Clegg ST; Samulski TV; Murphy KA; Rosner GL; Dewhirst MW
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):373-82. PubMed ID: 8063303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of an inverse heat transfer algorithm for optimizing hyperthermia treatments.
    Gayzik FS; Scott EP; Loulou T
    J Biomech Eng; 2006 Aug; 128(4):505-15. PubMed ID: 16813442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.
    Soetaert F; Dupré L; Ivkov R; Crevecoeur G
    Biomed Tech (Berl); 2015 Oct; 60(5):491-504. PubMed ID: 26351900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical applications of magnetic nanoparticles for hyperthermia.
    Thiesen B; Jordan A
    Int J Hyperthermia; 2008 Sep; 24(6):467-74. PubMed ID: 18608593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast transient thermal analysis of gold nanoparticles in tissue-like medium.
    Liu C; Li BQ; Mi CC
    IEEE Trans Nanobioscience; 2009 Sep; 8(3):271-80. PubMed ID: 20051339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy.
    Hou CH; Hou SM; Hsueh YS; Lin J; Wu HC; Lin FH
    Biomaterials; 2009 Aug; 30(23-24):3956-60. PubMed ID: 19446329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a new mini-invasive tumour hyperthermia probe using high-temperature water vapour.
    Yu TH; Zhou YX; Liu J
    J Med Eng Technol; 2004; 28(4):167-77. PubMed ID: 15371007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast FFT-based bioheat transfer equation computation.
    Dillenseger JL; Esneault S
    Comput Biol Med; 2010 Feb; 40(2):119-23. PubMed ID: 20018277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.