These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 20579733)
1. Monitoring copper toxicity in natural phytoplankton assemblages: application of Fast Repetition Rate fluorometry. Pérez P; Beiras R; Fernández E Ecotoxicol Environ Saf; 2010 Sep; 73(6):1292-303. PubMed ID: 20579733 [TBL] [Abstract][Full Text] [Related]
2. Fuel toxicity on Isochrysis galbana and a coastal phytoplankton assemblage: growth rate vs. variable fluorescence. Pérez P; Fernández E; Beiras R Ecotoxicol Environ Saf; 2010 Mar; 73(3):254-61. PubMed ID: 20060589 [TBL] [Abstract][Full Text] [Related]
3. Effect of copper on the photochemical efficiency, growth, and chlorophyll a biomass of natural phytoplankton assemblages. Pérez P; Estévez-Blanco P; Beiras R; Fernández E Environ Toxicol Chem; 2006 Jan; 25(1):137-43. PubMed ID: 16494234 [TBL] [Abstract][Full Text] [Related]
4. No detected toxic concentrations in in situ algal growth inhibition tests--a convenient approach to aquatic ecotoxicology. Wang C; Wang X; Su R; Liang S; Yang S Ecotoxicol Environ Saf; 2011 Mar; 74(3):225-9. PubMed ID: 20970190 [TBL] [Abstract][Full Text] [Related]
5. Direct and indirect effects of the herbicides Glyphosate, Bentazone and MCPA on eelgrass (Zostera marina). Nielsen LW; Dahllöf I Aquat Toxicol; 2007 Apr; 82(1):47-54. PubMed ID: 17328972 [TBL] [Abstract][Full Text] [Related]
6. Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: An investigation with pigment analysis by HPLC. Chakraborty P; Raghunadh Babu PV; Acharyya T; Bandyopadhyay D Chemosphere; 2010 Jul; 80(5):548-53. PubMed ID: 20493512 [TBL] [Abstract][Full Text] [Related]
7. Ecotoxicology of bromoacetic acid on estuarine phytoplankton. Gordon AR; Richardson TL; Pinckney JL Environ Pollut; 2015 Nov; 206():369-75. PubMed ID: 26247379 [TBL] [Abstract][Full Text] [Related]
8. The effects of a PSII inhibitor on phytoplankton community structure as assessed by HPLC pigment analyses, microscopy and flow cytometry. Devilla RA; Brown MT; Donkin M; Readman JW Aquat Toxicol; 2005 Jan; 71(1):25-38. PubMed ID: 15642629 [TBL] [Abstract][Full Text] [Related]
9. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay. Bengtson Nash SM; Quayle PA; Schreiber U; Müller JF Aquat Toxicol; 2005 May; 72(4):315-26. PubMed ID: 15848251 [TBL] [Abstract][Full Text] [Related]
10. Cu and Cd affect distinctly the physiology of a cosmopolitan tropical freshwater phytoplankton. Echeveste P; Silva JC; Lombardi AT Ecotoxicol Environ Saf; 2017 Sep; 143():228-235. PubMed ID: 28551580 [TBL] [Abstract][Full Text] [Related]
11. Estimation of chromophoric dissolved organic matter (CDOM) and photosynthetic activity of estuarine phytoplankton using a multiple-fixed-wavelength spectral fluorometer. Goldman EA; Smith EM; Richardson TL Water Res; 2013 Mar; 47(4):1616-30. PubMed ID: 23340016 [TBL] [Abstract][Full Text] [Related]
12. Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Han T; Kang SH; Park JS; Lee HK; Brown MT Aquat Toxicol; 2008 Jan; 86(2):176-84. PubMed ID: 18083244 [TBL] [Abstract][Full Text] [Related]
13. Monsoon-induced changes in the size-fractionated phytoplankton biomass and production rate in the estuarine and coastal waters of southwest coast of India. Madhu NV; Jyothibabu R; Balachandran KK Environ Monit Assess; 2010 Jul; 166(1-4):521-8. PubMed ID: 19484365 [TBL] [Abstract][Full Text] [Related]
14. Physiological responses of coastal phytoplankton (Visakhapatnam, SW Bay of Bengal, India) to experimental copper addition. Biswas H; Bandyopadhyay D Mar Environ Res; 2017 Oct; 131():19-31. PubMed ID: 28941642 [TBL] [Abstract][Full Text] [Related]
15. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence. Zhang Y; van Dijk MA; Liu M; Zhu G; Qin B Water Res; 2009 Oct; 43(18):4685-97. PubMed ID: 19665748 [TBL] [Abstract][Full Text] [Related]
16. Creosote toxicity to photosynthesis and plant growth in aquatic microcosms. Marwood CA; Bestari KT; Gensemer RW; Solomon KR; Greenberg BM Environ Toxicol Chem; 2003 May; 22(5):1075-85. PubMed ID: 12729217 [TBL] [Abstract][Full Text] [Related]
17. Calibrating biomonitors to ecological disturbance: a new technique for explaining metal effects in natural waters. Luoma SN; Cain DJ; Rainbow PS Integr Environ Assess Manag; 2010 Apr; 6(2):199-209. PubMed ID: 20821686 [TBL] [Abstract][Full Text] [Related]
18. The growth behavior of three marine phytoplankton species in the presence of commercial cypermethrin. Wang ZH; Yang YF; Yue WJ; Kang W; Liang WJ; Li WJ Ecotoxicol Environ Saf; 2010 Sep; 73(6):1408-14. PubMed ID: 20117836 [TBL] [Abstract][Full Text] [Related]
19. Ultraviolet B-photoprotection efficiency of mesocosm-enclosed natural phytoplankton communities from different latitudes: Rimouski (Canada) and Ubatuba (Brazil). Mohovic B; Gianesella SM; Laurion I; Roy S Photochem Photobiol; 2006; 82(4):952-61. PubMed ID: 16643086 [TBL] [Abstract][Full Text] [Related]
20. Intact and photomodified polycyclic aromatic hydrocarbons inhibit photosynthesis in natural assemblages of Lake Erie phytoplankton exposed to solar radiation. Marwood CA; Smith RE; Solomon KR; Charlton MN; Greenberg BM Ecotoxicol Environ Saf; 1999 Nov; 44(3):322-7. PubMed ID: 10581126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]