BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 2057979)

  • 1. Endothelium-dependent influence of small changes in extracellular magnesium concentration on the tone of feline middle cerebral arteries.
    Szabó C; Faragó M; Dóra E; Horváth I; Kovách AG
    Stroke; 1991 Jun; 22(6):785-9. PubMed ID: 2057979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of small changes in extracellular magnesium concentration on the tone of feline mesenteric arteries: involvement of endothelium.
    Szabó C; Faragó M; Dóra E
    Acta Physiol Hung; 1992; 79(3):295-303. PubMed ID: 1340086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonistic modulatory roles of magnesium and calcium on release of endothelium-derived relaxing factor and smooth muscle tone.
    Gold ME; Buga GM; Wood KS; Byrns RE; Chaudhuri G; Ignarro LJ
    Circ Res; 1990 Feb; 66(2):355-66. PubMed ID: 2153470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and charybdotoxin (CTX) on relaxations of isolated cerebral arteries to nitric oxide.
    Onoue H; Katusic ZS
    Brain Res; 1998 Feb; 785(1):107-13. PubMed ID: 9526059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the L-arginine-nitric oxide pathway in the changes in cerebrovascular reactivity following hemorrhagic hypotension and retransfusion.
    Szabó C; Csáki C; Benyó Z; Reivich M; Kovách AG
    Circ Shock; 1992 Aug; 37(4):307-16. PubMed ID: 1446389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of endothelium in the responses of human intracranial arteries to a slight reduction of extracellular magnesium.
    Szabó C; Hardebo JE; Salford LG
    Exp Physiol; 1992 Jan; 77(1):209-11. PubMed ID: 1543585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of extracellular magnesium on the contractile and endothelium-dependent dilatory responses of feline mesenteric arteries.
    Szabó C; Faragó M; Dóra E; Horváth I; Kovách AG
    Acta Physiol Hung; 1991; 78(1):19-26. PubMed ID: 1763648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contractile and endothelium-dependent dilatory responses of cerebral arteries at various extracellular magnesium concentrations.
    Faragó M; Szabó C; Dóra E; Horváth I; Kovách AG
    J Cereb Blood Flow Metab; 1991 Jan; 11(1):161-4. PubMed ID: 1984000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of endothelium in the response of the vein wall to magnesium withdrawal.
    Szabó C; Bérczi V; Schneider F; Kovách AG; Monos E
    Pflugers Arch; 1992 Feb; 420(2):140-5. PubMed ID: 1620574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different mechanisms of hypoxic relaxation in canine coronary arteries and rat abdominal aortas.
    Grser T; Rubanyi GM
    J Cardiovasc Pharmacol; 1992; 20 Suppl 12():S117-9. PubMed ID: 1282944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Two types of relaxation responses mediated by cyclic GMP in cerebral arteries].
    Kanamaru K; Waga S; Kojima T; Fujimoto K
    No To Shinkei; 1989 Jun; 41(6):559-65. PubMed ID: 2553081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium deficiency produces endothelium-dependent vasorelaxation in canine coronary arteries.
    Ku DD; Ann HS
    J Pharmacol Exp Ther; 1987 Jun; 241(3):961-6. PubMed ID: 3598912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation of endothelium-mediated vasodilation by halothane.
    Muldoon SM; Hart JL; Bowen KA; Freas W
    Anesthesiology; 1988 Jan; 68(1):31-7. PubMed ID: 3257364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arterial contractions induced by cumulative addition of calcium in hypertensive and normotensive rats: influence of endothelium.
    Kähönen M; Arvola P; Wu X; Pörsti I
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Jun; 349(6):627-36. PubMed ID: 7969514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelial-dependent sexual dimorphism in vascular smooth muscle: role of Mg2+ and Na+.
    Zhang AM; Altura BT; Altura BM
    Br J Pharmacol; 1992 Feb; 105(2):305-10. PubMed ID: 1348443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of mesenteric arterial tone in vitro in humans and rats.
    Hutri-Kähönen N; Kähönen M; Jolma P; Wu X; Sand J; Nordback I; Ylitalo P; Arvola P; Pörsti I
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Apr; 359(4):322-30. PubMed ID: 10344531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Action of noradrenaline on isolated proximal and distal coronary arteries of rat: selective release of endothelium-derived relaxing factor in proximal arteries.
    Nyborg NC
    Br J Pharmacol; 1990 Jul; 100(3):552-6. PubMed ID: 1975207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity of endothelium-dependent vasodilation in pressurized cerebral and small mesenteric resistance arteries of the rat.
    Lagaud GJ; Skarsgard PL; Laher I; van Breemen C
    J Pharmacol Exp Ther; 1999 Aug; 290(2):832-9. PubMed ID: 10411599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoflurane produces endothelium-independent relaxation in canine middle cerebral arteries.
    Flynn NM; Buljubasic N; Bosnjak ZJ; Kampine JP
    Anesthesiology; 1992 Mar; 76(3):461-7. PubMed ID: 1539859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for differential roles of nitric oxide (NO) and hyperpolarization in endothelium-dependent relaxation of pig isolated coronary artery.
    Kilpatrick EV; Cocks TM
    Br J Pharmacol; 1994 Jun; 112(2):557-65. PubMed ID: 7521260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.