These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 20579912)
1. Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. Duan J; Dixon SL; Lowrie JF; Sherman W J Mol Graph Model; 2010 Sep; 29(2):157-70. PubMed ID: 20579912 [TBL] [Abstract][Full Text] [Related]
2. How similar are similarity searching methods? A principal component analysis of molecular descriptor space. Bender A; Jenkins JL; Scheiber J; Sukuru SC; Glick M; Davies JW J Chem Inf Model; 2009 Jan; 49(1):108-19. PubMed ID: 19123924 [TBL] [Abstract][Full Text] [Related]
3. Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. Sastry M; Lowrie JF; Dixon SL; Sherman W J Chem Inf Model; 2010 May; 50(5):771-84. PubMed ID: 20450209 [TBL] [Abstract][Full Text] [Related]
4. LigMatch: a multiple structure-based ligand matching method for 3D virtual screening. Kinnings SL; Jackson RM J Chem Inf Model; 2009 Sep; 49(9):2056-66. PubMed ID: 19685924 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods. Venkatraman V; Pérez-Nueno VI; Mavridis L; Ritchie DW J Chem Inf Model; 2010 Dec; 50(12):2079-93. PubMed ID: 21090728 [TBL] [Abstract][Full Text] [Related]
6. Predicting the performance of fingerprint similarity searching. Vogt M; Bajorath J Methods Mol Biol; 2011; 672():159-73. PubMed ID: 20838968 [TBL] [Abstract][Full Text] [Related]
7. Introduction of a generally applicable method to estimate retrieval of active molecules for similarity searching using fingerprints. Vogt M; Bajorath J ChemMedChem; 2007 Sep; 2(9):1311-20. PubMed ID: 17562536 [TBL] [Abstract][Full Text] [Related]
8. A knowledge-based weighting approach to ligand-based virtual screening. Stiefl N; Zaliani A J Chem Inf Model; 2006; 46(2):587-96. PubMed ID: 16562987 [TBL] [Abstract][Full Text] [Related]
9. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition. Wei NN; Hamza A J Chem Inf Model; 2014 Jan; 54(1):338-46. PubMed ID: 24328054 [TBL] [Abstract][Full Text] [Related]
10. How do 2D fingerprints detect structurally diverse active compounds? Revealing compound subset-specific fingerprint features through systematic selection. Heikamp K; Bajorath J J Chem Inf Model; 2011 Sep; 51(9):2254-65. PubMed ID: 21793563 [TBL] [Abstract][Full Text] [Related]
11. Bayesian screening for active compounds in high-dimensional chemical spaces combining property descriptors and molecular fingerprints. Vogt M; Bajorath J Chem Biol Drug Des; 2008 Jan; 71(1):8-14. PubMed ID: 18069988 [TBL] [Abstract][Full Text] [Related]
12. Efficient virtual screening using multiple protein conformations described as negative images of the ligand-binding site. Virtanen SI; Pentikäinen OT J Chem Inf Model; 2010 Jun; 50(6):1005-11. PubMed ID: 20504004 [TBL] [Abstract][Full Text] [Related]
13. Performance evaluation of 2D fingerprint and 3D shape similarity methods in virtual screening. Hu G; Kuang G; Xiao W; Li W; Liu G; Tang Y J Chem Inf Model; 2012 May; 52(5):1103-13. PubMed ID: 22551340 [TBL] [Abstract][Full Text] [Related]
14. Virtual drug screen schema based on multiview similarity integration and ranking aggregation. Kang H; Sheng Z; Zhu R; Huang Q; Liu Q; Cao Z J Chem Inf Model; 2012 Mar; 52(3):834-43. PubMed ID: 22332590 [TBL] [Abstract][Full Text] [Related]
15. FieldChopper, a new tool for automatic model generation and virtual screening based on molecular fields. Kalliokoski T; Ronkko T; Poso A J Chem Inf Model; 2008 Jun; 48(6):1131-7. PubMed ID: 18489083 [TBL] [Abstract][Full Text] [Related]
16. Development of a fingerprint reduction approach for Bayesian similarity searching based on Kullback-Leibler divergence analysis. Nisius B; Vogt M; Bajorath J J Chem Inf Model; 2009 Jun; 49(6):1347-58. PubMed ID: 19480403 [TBL] [Abstract][Full Text] [Related]
17. Comparative evaluation of 3D virtual ligand screening methods: impact of the molecular alignment on enrichment. Giganti D; Guillemain H; Spadoni JL; Nilges M; Zagury JF; Montes M J Chem Inf Model; 2010 Jun; 50(6):992-1004. PubMed ID: 20527883 [TBL] [Abstract][Full Text] [Related]
18. Unconventional 2D shape similarity method affords comparable enrichment as a 3D shape method in virtual screening experiments. Ebalunode JO; Zheng W J Chem Inf Model; 2009 Jun; 49(6):1313-20. PubMed ID: 19480404 [TBL] [Abstract][Full Text] [Related]
19. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance. Bender A; Mussa HY; Glen RC; Reiling S J Chem Inf Comput Sci; 2004; 44(5):1708-18. PubMed ID: 15446830 [TBL] [Abstract][Full Text] [Related]
20. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors. Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]