These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 20579913)
1. Dose calculation algorithm of fast fine-heterogeneity correction for heavy charged particle radiotherapy. Kanematsu N Phys Med; 2011 Apr; 27(2):97-102. PubMed ID: 20579913 [TBL] [Abstract][Full Text] [Related]
2. Dynamic splitting of Gaussian pencil beams in heterogeneity-correction algorithms for radiotherapy with heavy charged particles. Kanematsu N; Komori M; Yonai S; Ishizaki A Phys Med Biol; 2009 Apr; 54(7):2015-27. PubMed ID: 19287085 [TBL] [Abstract][Full Text] [Related]
3. Modeling of beam customization devices in the pencil-beam splitting algorithm for heavy charged particle radiotherapy. Kanematsu N Phys Med Biol; 2011 Mar; 56(5):1361-71. PubMed ID: 21297242 [TBL] [Abstract][Full Text] [Related]
4. The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy. Kanematsu N; Yonai S; Ishizaki A Med Phys; 2008 Feb; 35(2):602-7. PubMed ID: 18383681 [TBL] [Abstract][Full Text] [Related]
5. Computational modeling of beam-customization devices for heavy-charged-particle radiotherapy. Kanematsu N; Yonai S; Ishizaki A; Torikoshi M Phys Med Biol; 2008 Jun; 53(12):3113-27. PubMed ID: 18495975 [TBL] [Abstract][Full Text] [Related]
6. GPU-based fast pencil beam algorithm for proton therapy. Fujimoto R; Kurihara T; Nagamine Y Phys Med Biol; 2011 Mar; 56(5):1319-28. PubMed ID: 21297243 [TBL] [Abstract][Full Text] [Related]
7. AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE. Panettieri V; Barsoum P; Westermark M; Brualla L; Lax I Radiother Oncol; 2009 Oct; 93(1):94-101. PubMed ID: 19541380 [TBL] [Abstract][Full Text] [Related]
8. Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams. Sawakuchi GO; Titt U; Mirkovic D; Ciangaru G; Zhu XR; Sahoo N; Gillin MT; Mohan R Phys Med Biol; 2010 Feb; 55(3):711-21. PubMed ID: 20071752 [TBL] [Abstract][Full Text] [Related]
9. Stochastic versus deterministic kernel-based superposition approaches for dose calculation of intensity-modulated arcs. Tang G; Earl MA; Luan S; Wang C; Cao D; Yu CX; Naqvi SA Phys Med Biol; 2008 Sep; 53(17):4733-46. PubMed ID: 18701770 [TBL] [Abstract][Full Text] [Related]
10. Fluence-convolution broad-beam (FCBB) dose calculation. Lu W; Chen M Phys Med Biol; 2010 Dec; 55(23):7211-29. PubMed ID: 21081826 [TBL] [Abstract][Full Text] [Related]
11. On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams. Andreo P Phys Med Biol; 2009 Jun; 54(11):N205-15. PubMed ID: 19436099 [TBL] [Abstract][Full Text] [Related]
12. A beam source model for scanned proton beams. Kimstrand P; Traneus E; Ahnesjö A; Grusell E; Glimelius B; Tilly N Phys Med Biol; 2007 Jun; 52(11):3151-68. PubMed ID: 17505095 [TBL] [Abstract][Full Text] [Related]
13. An efficient framework for photon Monte Carlo treatment planning. Fix MK; Manser P; Frei D; Volken W; Mini R; Born EJ Phys Med Biol; 2007 Oct; 52(19):N425-37. PubMed ID: 17881793 [TBL] [Abstract][Full Text] [Related]
14. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy. Paganetti H; Jiang H; Parodi K; Slopsema R; Engelsman M Phys Med Biol; 2008 Sep; 53(17):4825-53. PubMed ID: 18701772 [TBL] [Abstract][Full Text] [Related]
15. A particle track-repeating algorithm for proton beam dose calculation. Li JS; Shahine B; Fourkal E; Ma CM Phys Med Biol; 2005 Mar; 50(5):1001-10. PubMed ID: 15798272 [TBL] [Abstract][Full Text] [Related]
16. Extended collimator model for pencil-beam dose calculation in proton radiotherapy. Kanematsu N; Akagi T; Takatani Y; Yonai S; Sakamoto H; Yamashita H Phys Med Biol; 2006 Oct; 51(19):4807-17. PubMed ID: 16985272 [TBL] [Abstract][Full Text] [Related]
17. A novel pencil beam model for carbon-ion dose calculation derived from Monte Carlo simulations. Zhang H; Dai Z; Liu X; Chen W; Ma Y; He P; Dai T; Shen G; Yuan P; Li Q Phys Med; 2018 Nov; 55():15-24. PubMed ID: 30471815 [TBL] [Abstract][Full Text] [Related]
18. A filtering approach based on Gaussian-powerlaw convolutions for local PET verification of proton radiotherapy. Parodi K; Bortfeld T Phys Med Biol; 2006 Apr; 51(8):1991-2009. PubMed ID: 16585841 [TBL] [Abstract][Full Text] [Related]
19. Implementation of pencil kernel and depth penetration algorithms for treatment planning of proton beams. Russell KR; Isacsson U; Saxner M; Ahnesjö A; Montelius A; Grusell E; Dahlgren CV; Lorin S; Glimelius B Phys Med Biol; 2000 Jan; 45(1):9-27. PubMed ID: 10661580 [TBL] [Abstract][Full Text] [Related]
20. Advanced kernel methods vs. Monte Carlo-based dose calculation for high energy photon beams. Fotina I; Winkler P; Künzler T; Reiterer J; Simmat I; Georg D Radiother Oncol; 2009 Dec; 93(3):645-53. PubMed ID: 19926153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]