These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2058000)

  • 1. Structural predictions for membrane proteins: the dilemma of hydrophobicity scales.
    Crimi M; Degli Esposti M
    Trends Biochem Sci; 1991 Mar; 16(3):119. PubMed ID: 2058000
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural studies on rhodopsin.
    Albert AD; Yeagle PL
    Biochim Biophys Acta; 2002 Oct; 1565(2):183-95. PubMed ID: 12409194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards structural genomics for transmembrane proteins.
    Jones DT; Taylor WR
    Biochem Soc Trans; 1998 Aug; 26(3):429-38. PubMed ID: 9765892
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of phosphorylation on the structure of the G-protein receptor rhodopsin.
    Dorey M; Hargrave PA; McDowell JH; Arendt A; Vogt T; Bhawsar N; Albert AD; Yeagle PL
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):217-24. PubMed ID: 9889371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane protein activation refined by site-specific hydration dynamics.
    Hussain S; Franck JM; Han S
    Angew Chem Int Ed Engl; 2013 Feb; 52(7):1953-8. PubMed ID: 23307344
    [No Abstract]   [Full Text] [Related]  

  • 6. Structural studies of metarhodopsin II, the activated form of the G-protein coupled receptor, rhodopsin.
    Choi G; Landin J; Galan JF; Birge RR; Albert AD; Yeagle PL
    Biochemistry; 2002 Jun; 41(23):7318-24. PubMed ID: 12044163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors.
    Ballesteros JA; Shi L; Javitch JA
    Mol Pharmacol; 2001 Jul; 60(1):1-19. PubMed ID: 11408595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deuterium NMR structure of retinal in the ground state of rhodopsin.
    Salgado GF; Struts AV; Tanaka K; Fujioka N; Nakanishi K; Brown MF
    Biochemistry; 2004 Oct; 43(40):12819-28. PubMed ID: 15461454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the G-protein-coupled receptor, rhodopsin: a domain approach.
    Yeagle PL; Albert AD
    Biochem Soc Trans; 1998 Aug; 26(3):520-31. PubMed ID: 9765908
    [No Abstract]   [Full Text] [Related]  

  • 10. Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin.
    Saam J; Tajkhorshid E; Hayashi S; Schulten K
    Biophys J; 2002 Dec; 83(6):3097-112. PubMed ID: 12496081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and orientation of ligands bound to membrane proteins are reflected by residual dipolar couplings in solution NMR measurements.
    Koenig BW
    Chembiochem; 2002 Oct; 3(10):975-80. PubMed ID: 12362362
    [No Abstract]   [Full Text] [Related]  

  • 12. Dynamic single-molecule force spectroscopy of rhodopsin in native membranes.
    Park PS; Müller DJ
    Methods Mol Biol; 2015; 1271():173-85. PubMed ID: 25697524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure at 2.5 A of a designed peptide that maintains solubility of membrane proteins.
    Schafmeister CE; Miercke LJ; Stroud RM
    Science; 1993 Oct; 262(5134):734-8. PubMed ID: 8235592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined biophysical and biochemical information confirms arrangement of transmembrane helices visible from the three-dimensional map of frog rhodopsin.
    Herzyk P; Hubbard RE
    J Mol Biol; 1998 Aug; 281(4):741-54. PubMed ID: 9710543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the fuzzy-oil-drop model to membrane protein simulation.
    Zobnina V; Roterman I
    Proteins; 2009 Nov; 77(2):378-94. PubMed ID: 19455711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of proteins in G-protein-coupled signal transfer.
    Helmreich EJ; Hofmann KP
    Biochim Biophys Acta; 1996 Oct; 1286(3):285-322. PubMed ID: 8982287
    [No Abstract]   [Full Text] [Related]  

  • 17. Crystal structure of rhodopsin: a template for cone visual pigments and other G protein-coupled receptors.
    Stenkamp RE; Filipek S; Driessen CA; Teller DC; Palczewski K
    Biochim Biophys Acta; 2002 Oct; 1565(2):168-82. PubMed ID: 12409193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural network model for the prediction of membrane-spanning amino acid sequences.
    Lohmann R; Schneider G; Behrens D; Wrede P
    Protein Sci; 1994 Sep; 3(9):1597-601. PubMed ID: 7833818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vapor diffusion-controlled meso crystallization of membrane proteins.
    Labahn J; Kubicek J; Schäfer F
    Methods Mol Biol; 2012; 914():17-24. PubMed ID: 22976020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation and stability of alpha-helical membrane proteins. 1. Influence of salts on conformational equilibria between active and Inactive states of rhodopsin.
    Vogel R; Siebert F
    Biochemistry; 2002 Mar; 41(11):3529-35. PubMed ID: 11888268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.