These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 20580014)

  • 41. Simple model for overcharging of a sphere by a wrapped oppositely charged asymmetrically neutralized polyelectrolyte: Possible effects of helical charge distribution.
    Cherstvy AG; Winkler RG
    J Phys Chem B; 2005 Feb; 109(7):2962-9. PubMed ID: 16851310
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of hydrodynamic separation of biological objects in microchannel devices.
    Lin YC; Jen CP
    Lab Chip; 2002 Aug; 2(3):164-9. PubMed ID: 15100828
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrodynamic fragmentation of nanoparticle aggregates at orthokinetic coagulation.
    Dukhin S; Zhu C; Dave RN; Yu Q
    Adv Colloid Interface Sci; 2005 Jun; 114-115():119-31. PubMed ID: 15936286
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reactivity enhancement of ultracold O(3P)+H2 collisions by van der Waals interactions.
    Weck PF; Balakrishnan N
    J Chem Phys; 2005 Oct; 123(14):144308. PubMed ID: 16238392
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theoretical study of volume changes associated with the helix-coil transition of an alanine-rich peptide in aqueous solution.
    Imai T; Takekiyo T; Kovalenko A; Hirata F; Kato M; Taniguchi Y
    Biopolymers; 2005 Oct; 79(2):97-105. PubMed ID: 16001396
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microflotation Suppression and Enhancement Caused by Particle/Bubble Electrostatic Interaction.
    Mishchuk NA; Koopal LK; Dukhin SS
    J Colloid Interface Sci; 2001 May; 237(2):208-223. PubMed ID: 11334536
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The electrical double layer on gold probed by electrokinetic and surface force measurements.
    Giesbers M; Kleijn JM; Cohen Stuart MA
    J Colloid Interface Sci; 2002 Apr; 248(1):88-95. PubMed ID: 16290507
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development and applications of the interfacial tension between water and organic or biological surfaces.
    van Oss CJ
    Colloids Surf B Biointerfaces; 2007 Jan; 54(1):2-9. PubMed ID: 16842983
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Signatures of van der Waals and Electrostatic Forces in the Deposition of Nanoparticle Assemblies.
    Homede E; Zigelman A; Abezgauz L; Manor O
    J Phys Chem Lett; 2018 Sep; 9(18):5226-5232. PubMed ID: 30145891
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermodynamic scaling of the viscosity of van der Waals, H-bonded, and ionic liquids.
    Roland CM; Bair S; Casalini R
    J Chem Phys; 2006 Sep; 125(12):124508. PubMed ID: 17014192
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Free energy of hydration of collagen models and the enthalpy of the transition between the triple-helical coiled-coil and single-stranded conformations.
    Némethy G; Scheraga HA
    Biopolymers; 1989 Sep; 28(9):1573-84. PubMed ID: 2775848
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds.
    Kovács A; Esterhuysen C; Frenking G
    Chemistry; 2005 Mar; 11(6):1813-25. PubMed ID: 15672434
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of van der Waals forces on droplet morphological transitions and solvation forces in nanochannels.
    Dutka F; Napiórkowski M
    J Phys Condens Matter; 2014 Jan; 26(3):035101. PubMed ID: 24285307
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensitivity analysis of thermodynamic properties of liquid water: a general approach to improve empirical potentials.
    Iordanov TD; Schenter GK; Garrett BC
    J Phys Chem A; 2006 Jan; 110(2):762-71. PubMed ID: 16405351
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The van der Waals potential of the magnesium dimer.
    Li P; Xie W; Tang KT
    J Chem Phys; 2010 Aug; 133(8):084308. PubMed ID: 20815570
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stability of Concentrated Colloids: The Controlling Parameters.
    SenGupta AK; Papadopoulos KD
    J Colloid Interface Sci; 1998 Jul; 203(2):345-53. PubMed ID: 9705773
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Brownian dynamics simulations with stiff finitely extensible nonlinear elastic-Fraenkel springs as approximations to rods in bead-rod models.
    Hsieh CC; Jain S; Larson RG
    J Chem Phys; 2006 Jan; 124(4):044911. PubMed ID: 16460216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Foam films stabilized by dodecyl maltoside. 1. Film thickness and free energy of film formation.
    Muruganathan RM; Krustev R; Müller HJ; Möhwald H; Kolaric B; Klitzing RV
    Langmuir; 2004 Jul; 20(15):6352-8. PubMed ID: 15248722
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy.
    Levy RM; Zhang LY; Gallicchio E; Felts AK
    J Am Chem Soc; 2003 Aug; 125(31):9523-30. PubMed ID: 12889983
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Breakdown of Hooke's law at the nanoscale - 2D material-based nanosprings.
    Zhan H; Zhang G; Yang C; Gu Y
    Nanoscale; 2018 Oct; 10(40):18961-18968. PubMed ID: 30209479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.