These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 20580315)

  • 21. Microrheology of erythrocytes, blood viscosity, and the distribution of blood flow in the microcirculation.
    Schmid-Schönbein H
    Int Rev Physiol; 1976; 9():1-62. PubMed ID: 977248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Human Microcirculation: Regulation of Flow and Beyond.
    Gutterman DD; Chabowski DS; Kadlec AO; Durand MJ; Freed JK; Ait-Aissa K; Beyer AM
    Circ Res; 2016 Jan; 118(1):157-72. PubMed ID: 26837746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions.
    Lanotte L; Mauer J; Mendez S; Fedosov DA; Fromental JM; Claveria V; Nicoud F; Gompper G; Abkarian M
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13289-13294. PubMed ID: 27834220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions.
    Fukumura D; Yuan F; Endo M; Jain RK
    Am J Pathol; 1997 Feb; 150(2):713-25. PubMed ID: 9033284
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acute dairy milk ingestion does not improve nitric oxide-dependent vasodilation in the cutaneous microcirculation.
    Alba BK; Stanhewicz AE; Kenney WL; Alexander LM
    Br J Nutr; 2016 Jul; 116(2):204-10. PubMed ID: 27180680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Erythrocytes and microvascular tone during acute traumatic haemorrhagic shock].
    Morel N; Biais M; Delaunay F; Dubuisson V; Cassone O; Siméon F; Morel O; Janvier G
    Ann Fr Anesth Reanim; 2013 May; 32(5):339-46. PubMed ID: 23611789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A dynamic computational network model for the role of nitric oxide and the myogenic response in microvascular flow regulation.
    Liu Y; Buerk DG; Barbee KA; Jaron D
    Microcirculation; 2018 Aug; 25(6):e12465. PubMed ID: 29885064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applying gases for microcirculatory and cellular oxygenation in sepsis: effects of nitric oxide, carbon monoxide, and hydrogen sulfide.
    Baumgart K; Radermacher P; Wagner F
    Curr Opin Anaesthesiol; 2009 Apr; 22(2):168-76. PubMed ID: 19390245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitric oxide bioavailability in the microcirculation: insights from mathematical models.
    Tsoukias NM
    Microcirculation; 2008 Nov; 15(8):813-34. PubMed ID: 18608992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endothelium-mediated control of coronary vascular tone after chronic exercise training.
    Laughlin MH
    Med Sci Sports Exerc; 1995 Aug; 27(8):1135-44. PubMed ID: 7476057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clinical and methodological aspects of endothelial function in patients with systemic autoimmune diseases.
    Ghiadoni L; Mosca M; Tani C; Virdis A; Taddei S; Bombardieri S
    Clin Exp Rheumatol; 2008; 26(4):680-7. PubMed ID: 18799106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation.
    Gladwin MT; Crawford JH; Patel RP
    Free Radic Biol Med; 2004 Mar; 36(6):707-17. PubMed ID: 14990351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide.
    Bateman RM; Sharpe MD; Ellis CG
    Crit Care; 2003 Oct; 7(5):359-73. PubMed ID: 12974969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Storage lesion in banked blood due to hemolysis-dependent disruption of nitric oxide homeostasis.
    Gladwin MT; Kim-Shapiro DB
    Curr Opin Hematol; 2009 Nov; 16(6):515-23. PubMed ID: 19701085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Randomized controlled trial of inhaled nitric oxide for the treatment of microcirculatory dysfunction in patients with sepsis*.
    Trzeciak S; Glaspey LJ; Dellinger RP; Durflinger P; Anderson K; Dezfulian C; Roberts BW; Chansky ME; Parrillo JE; Hollenberg SM
    Crit Care Med; 2014 Dec; 42(12):2482-92. PubMed ID: 25080051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Red Blood Cell Dysfunction in Critical Illness.
    Rogers S; Doctor A
    Crit Care Clin; 2020 Apr; 36(2):267-292. PubMed ID: 32172813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The endothelium: physiological functions and role in microcirculatory failure during severe sepsis.
    Ait-Oufella H; Maury E; Lehoux S; Guidet B; Offenstadt G
    Intensive Care Med; 2010 Aug; 36(8):1286-98. PubMed ID: 20443110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rheology in the microcirculation in normal and low flow states.
    Chien S
    Adv Shock Res; 1982; 8():71-80. PubMed ID: 7136948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction.
    Nagababu E; Ramasamy S; Abernethy DR; Rifkind JM
    J Biol Chem; 2003 Nov; 278(47):46349-56. PubMed ID: 12952953
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Angiopoietin-1 regulates microvascular reactivity and protects the microcirculation during acute endothelial dysfunction: role of eNOS and VE-cadherin.
    Alfieri A; Ong AC; Kammerer RA; Solanky T; Bate S; Tasab M; Brown NJ; Brookes ZL
    Pharmacol Res; 2014 Feb; 80():43-51. PubMed ID: 24407281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.