These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 20580370)
1. Probing the kinetic performance limits for ion chromatography. I. Isocratic conditions for small ions. Causon TJ; Hilder EF; Shellie RA; Haddad PR J Chromatogr A; 2010 Jul; 1217(31):5057-62. PubMed ID: 20580370 [TBL] [Abstract][Full Text] [Related]
2. Probing the kinetic performance limits for ion chromatography. II. Gradient conditions for small ions. Causon TJ; Hilder EF; Shellie RA; Haddad PR J Chromatogr A; 2010 Jul; 1217(31):5063-8. PubMed ID: 20542515 [TBL] [Abstract][Full Text] [Related]
3. Packing procedures for high efficiency, short ion-exchange columns for rapid separation of inorganic anions. Tyrrell E; Hilder EF; Shalliker RA; Dicinoski GW; Shellie RA; Breadmore MC; Pohl CA; Haddad PR J Chromatogr A; 2008 Oct; 1208(1-2):95-100. PubMed ID: 18786674 [TBL] [Abstract][Full Text] [Related]
4. Capillary ion chromatography at high pressure and temperature. Wouters B; Bruggink C; Desmet G; Agroskin Y; Pohl CA; Eeltink S Anal Chem; 2012 Aug; 84(16):7212-7. PubMed ID: 22830640 [TBL] [Abstract][Full Text] [Related]
5. Achieving rapid low-pressure ion chromatography separations on short silica-based monolithic columns. Pelletier S; Lucy CA J Chromatogr A; 2006 Jun; 1118(1):12-8. PubMed ID: 16616176 [TBL] [Abstract][Full Text] [Related]
6. Comparison of nonporous silica-based ion exchangers and monolithic ion exchangers in separations of inorganic anions. Kanatyeva AY; Viktorova EN; Korolev AA; Kurganov AA J Sep Sci; 2007 Nov; 30(17):2836-42. PubMed ID: 18027891 [TBL] [Abstract][Full Text] [Related]
7. Using contemporary liquid chromatography theory and technology to improve capillary gradient ion-exchange separations. Wouters B; Broeckhoven K; Wouters S; Bruggink C; Agroskin Y; Pohl CA; Eeltink S J Chromatogr A; 2014 Nov; 1370():63-9. PubMed ID: 25454130 [TBL] [Abstract][Full Text] [Related]
8. Equilibrium-based approach for prediction of matrix-related interferences in anion chromatography. Hajós P; Horváth K J Chromatogr A; 2008 Jul; 1198-1199():101-6. PubMed ID: 18550073 [TBL] [Abstract][Full Text] [Related]
9. Separation of small inorganic anions using methacrylate-based anion-exchange monolithic column prepared by low temperature UV photo-polymerization. Takahashi M; Hirano T; Kitagawa S; Ohtani H J Chromatogr A; 2012 Apr; 1232():123-7. PubMed ID: 22098934 [TBL] [Abstract][Full Text] [Related]
10. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions. Michalski R; Lyko A; Kurzyca I J Chromatogr Sci; 2012 Jul; 50(6):482-93. PubMed ID: 22511288 [TBL] [Abstract][Full Text] [Related]
11. Retention controlling and peak shape simulation in anion chromatography using multiple equilibrium model and stochastic theory. Horváth K; Olajos M; Felinger A; Hajós P J Chromatogr A; 2008 May; 1189(1-2):42-51. PubMed ID: 17719052 [TBL] [Abstract][Full Text] [Related]
12. Tunable separation of anions and cations by column switching in ion chromatography. Amin M; Lim LW; Takeuchi T Talanta; 2007 Mar; 71(4):1470-5. PubMed ID: 19071477 [TBL] [Abstract][Full Text] [Related]
13. Fast determination of anions on a short coated column. Li J; Zhu Y; Guo Y J Chromatogr A; 2006 Jun; 1118(1):46-50. PubMed ID: 16476438 [TBL] [Abstract][Full Text] [Related]
14. Long-chain alkylimidazolium ionic liquids, a new class of cationic surfactants coated on ODS columns for anion-exchange chromatography. Qiu H; Zhang Q; Chen L; Liu X; Jiang S J Sep Sci; 2008 Aug; 31(15):2791-6. PubMed ID: 18666173 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous separation of inorganic anions and cations by using anion-exchange and cation-exchange columns connected in tandem in ion chromatography. Karim KJ; Jin JY; Takeuchi T J Chromatogr A; 2003 May; 995(1-2):153-60. PubMed ID: 12800932 [TBL] [Abstract][Full Text] [Related]
16. Application of retention modelling to the simulation of separation of organic anions in suppressed ion chromatography. Zakaria P; Dicinoski GW; Ng BK; Shellie RA; Hanna-Brown M; Haddad PR J Chromatogr A; 2009 Sep; 1216(38):6600-10. PubMed ID: 19683244 [TBL] [Abstract][Full Text] [Related]
17. Method to predict and compare the influence of the particle size on the isocratic peak capacity of high-performance liquid chromatography columns. Cabooter D; de Villiers A; Clicq D; Szucs R; Sandra P; Desmet G J Chromatogr A; 2007 Apr; 1147(2):183-91. PubMed ID: 17339038 [TBL] [Abstract][Full Text] [Related]
18. Two-dimensional ion chromatography using tandem ion-exchange columns with gradient-pulse column switching. Johns C; Shellie RA; Pohl CA; Haddad PR J Chromatogr A; 2009 Oct; 1216(41):6931-7. PubMed ID: 19732899 [TBL] [Abstract][Full Text] [Related]
19. Separation of inorganic anions on a high capacity porous polymeric monolithic column and application to direct determination of anions in seawater. Evenhuis CJ; Buchberger W; Hilder EF; Flook KJ; Pohl CA; Nesterenko PN; Haddad PR J Sep Sci; 2008 Aug; 31(14):2598-604. PubMed ID: 18618468 [TBL] [Abstract][Full Text] [Related]
20. Methodology for porting retention prediction data from old to new columns and from conventional-scale to miniaturised ion chromatography systems. Ng BK; Shellie RA; Dicinoski GW; Bloomfield C; Liu Y; Pohl CA; Haddad PR J Chromatogr A; 2011 Aug; 1218(32):5512-9. PubMed ID: 21741652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]