BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20580825)

  • 1. Quantitative methods for structural characterization of proteins based on deep UV resonance Raman spectroscopy.
    Shashilov VA; Sikirzhytski V; Popova LA; Lednev IK
    Methods; 2010 Sep; 52(1):23-37. PubMed ID: 20580825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hen egg white lysozyme fibrillation: a deep-UV resonance Raman spectroscopic study.
    Xu M; Ermolenkov VV; Uversky VN; Lednev IK
    J Biophotonics; 2008 Aug; 1(3):215-29. PubMed ID: 19412971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural variations in the cross-beta core of amyloid beta fibrils revealed by deep UV resonance Raman spectroscopy.
    Popova LA; Kodali R; Wetzel R; Lednev IK
    J Am Chem Soc; 2010 May; 132(18):6324-8. PubMed ID: 20405832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D correlation deep UV resonance raman spectroscopy of early events of lysozyme fibrillation: kinetic mechanism and potential interpretation pitfalls.
    Shashilov VA; Lednev IK
    J Am Chem Soc; 2008 Jan; 130(1):309-17. PubMed ID: 18067295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic engineering combined with deep UV resonance Raman spectroscopy for structural characterization of amyloid-like fibrils.
    Sikirzhytski V; Topilina NI; Higashiya S; Welch JT; Lednev IK
    J Am Chem Soc; 2008 May; 130(18):5852-3. PubMed ID: 18410104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysozyme fibrillation: deep UV Raman spectroscopic characterization of protein structural transformation.
    Xu M; Ermolenkov VV; He W; Uversky VN; Fredriksen L; Lednev IK
    Biopolymers; 2005 Sep; 79(1):58-61. PubMed ID: 15962278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of quantitative methods in protein secondary structure determination via deep-ultraviolet resonance Raman spectroscopy.
    Roach CA; Simpson JV; JiJi RD
    Analyst; 2012 Feb; 137(3):555-62. PubMed ID: 22146490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the cross-beta core structure of amyloid fibrils by hydrogen-deuterium exchange deep ultraviolet resonance Raman spectroscopy.
    Xu M; Shashilov V; Lednev IK
    J Am Chem Soc; 2007 Sep; 129(36):11002-3. PubMed ID: 17705492
    [No Abstract]   [Full Text] [Related]  

  • 9. "Parallel factor analysis of multi-excitation ultraviolet resonance Raman spectra for protein secondary structure determination".
    Oshokoya OO; JiJi RD
    Anal Chim Acta; 2015 Sep; 892():59-68. PubMed ID: 26388475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing a fibrillation nucleus directly by deep ultraviolet Raman spectroscopy.
    Shashilov V; Xu M; Ermolenkov VV; Fredriksen L; Lednev IK
    J Am Chem Soc; 2007 Jun; 129(22):6972-3. PubMed ID: 17500518
    [No Abstract]   [Full Text] [Related]  

  • 11. Deep-UV resonance Raman analysis of the Rhodobacter capsulatus cytochrome bc₁complex reveals a potential marker for the transmembrane peptide backbone.
    Halsey CM; Oshokoya OO; Jiji RD; Cooley JW
    Biochemistry; 2011 Aug; 50(30):6531-8. PubMed ID: 21718040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-Ultraviolet Resonance Raman (DUVRR) Spectroscopy of Therapeutic Monoclonal Antibodies Subjected to Thermal Stress.
    Bueno J; Long D; Kauffman JF; Arzhantsev S
    Anal Chem; 2015 Aug; 87(15):7880-6. PubMed ID: 26132464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure.
    Chi Z; Chen XG; Holtz JS; Asher SA
    Biochemistry; 1998 Mar; 37(9):2854-64. PubMed ID: 9485436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MCR-ALS analysis of two-way UV resonance Raman spectra to resolve discrete protein secondary structural motifs.
    Simpson JV; Balakrishnan G; Jiji RD
    Analyst; 2009 Jan; 134(1):138-47. PubMed ID: 19082186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-UV Raman spectrometer tunable between 193 and 205 nm for structural characterization of proteins.
    Lednev IK; Ermolenkov VV; He W; Xu M
    Anal Bioanal Chem; 2005 Jan; 381(2):431-7. PubMed ID: 15625596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational Raman optical activity of alpha-lactalbumin: comparison with lysozyme, and evidence for native tertiary folds in molten globule states.
    Wilson G; Ford SJ; Cooper A; Hecht L; Wen ZQ; Barron LD
    J Mol Biol; 1995 Dec; 254(4):747-60. PubMed ID: 7500347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate determination of protein secondary structure content from Raman and Raman optical activity spectra.
    Kinalwa MN; Blanch EW; Doig AJ
    Anal Chem; 2010 Aug; 82(15):6347-9. PubMed ID: 20669990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual structure in unfolded proteins revealed by Raman optical activity.
    Wilson G; Hecht L; Barron LD
    Biochemistry; 1996 Sep; 35(38):12518-25. PubMed ID: 8823188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of multivariate curve resolution-alternating least squares (MCR-ALS) for secondary structure resolving of proteins.
    Shariati-Rad M; Hasani M
    Biochimie; 2009 Jul; 91(7):850-6. PubMed ID: 19376189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-ultraviolet (UV) resonance raman spectroscopy as a tool for quality control of formulated therapeutic proteins.
    Arzhantsev S; Vilker V; Kauffman J
    Appl Spectrosc; 2012 Nov; 66(11):1262-8. PubMed ID: 23146181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.