These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 20580872)
1. Use of a bioactive scaffold for the repair of bone defects in a novel reproducible vertebral body defect model. Liang H; Wang K; Shimer AL; Li X; Balian G; Shen FH Bone; 2010 Aug; 47(2):197-204. PubMed ID: 20580872 [TBL] [Abstract][Full Text] [Related]
2. A novel strategy of spine defect repair with a degradable bioactive scaffold preloaded with adipose-derived stromal cells. Liang H; Li X; Shimer AL; Balian G; Shen FH Spine J; 2014 Mar; 14(3):445-54. PubMed ID: 24360747 [TBL] [Abstract][Full Text] [Related]
3. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. Oest ME; Dupont KM; Kong HJ; Mooney DJ; Guldberg RE J Orthop Res; 2007 Jul; 25(7):941-50. PubMed ID: 17415756 [TBL] [Abstract][Full Text] [Related]
4. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan. Li J; Jin L; Wang M; Zhu S; Xu S Biomed Mater; 2015 Jul; 10(4):045004. PubMed ID: 26154695 [TBL] [Abstract][Full Text] [Related]
5. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
6. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916 [TBL] [Abstract][Full Text] [Related]
7. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate. Bizenjima T; Takeuchi T; Seshima F; Saito A Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of tibial regeneration in a rat model by adipose-derived stromal cells in a PLGA scaffold. Park BH; Zhou L; Jang KY; Park HS; Lim JM; Yoon SJ; Lee SY; Kim JR Bone; 2012 Sep; 51(3):313-23. PubMed ID: 22684001 [TBL] [Abstract][Full Text] [Related]
9. Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM-PLGA microspheres for bone cancer treatment. Rong ZJ; Yang LJ; Cai BT; Zhu LX; Cao YL; Wu GF; Zhang ZJ J Mater Sci Mater Med; 2016 May; 27(5):89. PubMed ID: 26975746 [TBL] [Abstract][Full Text] [Related]
10. PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model. Lin S; Cui L; Chen G; Huang J; Yang Y; Zou K; Lai Y; Wang X; Zou L; Wu T; Cheng JCY; Li G; Wei B; Lee WYW Biomaterials; 2019 Mar; 196():109-121. PubMed ID: 29655516 [TBL] [Abstract][Full Text] [Related]
11. Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure. He F; Chen Y; Li J; Lin B; Ouyang Y; Yu B; Xia Y; Yu B; Ye J J Biomed Mater Res A; 2015 Apr; 103(4):1312-24. PubMed ID: 24890626 [TBL] [Abstract][Full Text] [Related]
12. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. Igwe JC; Mikael PE; Nukavarapu SP J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304 [TBL] [Abstract][Full Text] [Related]
13. Exogenous phytoestrogenic molecule icaritin incorporated into a porous scaffold for enhancing bone defect repair. Wang XL; Xie XH; Zhang G; Chen SH; Yao D; He K; Wang XH; Yao XS; Leng Y; Fung KP; Leung KS; Qin L J Orthop Res; 2013 Jan; 31(1):164-72. PubMed ID: 22807243 [TBL] [Abstract][Full Text] [Related]
14. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model. Ge Z; Tian X; Heng BC; Fan V; Yeo JF; Cao T Biomed Mater; 2009 Apr; 4(2):021001. PubMed ID: 19208943 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of bone repair of critical size defects treated with simvastatin-loaded poly(lactic-co-glycolic acid) microspheres in rat calvaria. Ferreira LB; Bradaschia-Correa V; Moreira MM; Marques ND; Arana-Chavez VE J Biomater Appl; 2015 Feb; 29(7):965-76. PubMed ID: 25209881 [TBL] [Abstract][Full Text] [Related]
16. Improving bone formation in a rat femur segmental defect by controlling bone morphogenetic protein-2 release. Brown KV; Li B; Guda T; Perrien DS; Guelcher SA; Wenke JC Tissue Eng Part A; 2011 Jul; 17(13-14):1735-46. PubMed ID: 21338268 [TBL] [Abstract][Full Text] [Related]
17. Bone-Healing Capacity of PCL/PLGA/Duck Beak Scaffold in Critical Bone Defects in a Rabbit Model. Lee JY; Son SJ; Son JS; Kang SS; Choi SH Biomed Res Int; 2016; 2016():2136215. PubMed ID: 27042660 [TBL] [Abstract][Full Text] [Related]
18. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Cao H; Kuboyama N Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045 [TBL] [Abstract][Full Text] [Related]
19. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology. Yu D; Li Q; Mu X; Chang T; Xiong Z Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295 [TBL] [Abstract][Full Text] [Related]
20. Sustained delivery of rhBMP-2 by means of poly(lactic-co-glycolic acid) microspheres: cranial bone regeneration without heterotopic ossification or craniosynostosis. Wink JD; Gerety PA; Sherif RD; Lim Y; Clarke NA; Rajapakse CS; Nah HD; Taylor JA Plast Reconstr Surg; 2014 Jul; 134(1):51-59. PubMed ID: 24622573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]