These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. Kim KS; Park SH; Jenks MA J Plant Physiol; 2007 Sep; 164(9):1134-43. PubMed ID: 16904233 [TBL] [Abstract][Full Text] [Related]
4. OsGL1-3 is involved in cuticular wax biosynthesis and tolerance to water deficit in rice. Zhou X; Li L; Xiang J; Gao G; Xu F; Liu A; Zhang X; Peng Y; Chen X; Wan X PLoS One; 2015; 10(1):e116676. PubMed ID: 25555239 [TBL] [Abstract][Full Text] [Related]
5. Chemical composition and water permeability of the cuticular wax barrier in rose leaf and petal: A comparative investigation. Cheng G; Huang H; Zhou L; He S; Zhang Y; Cheng X Plant Physiol Biochem; 2019 Feb; 135():404-410. PubMed ID: 30635221 [TBL] [Abstract][Full Text] [Related]
6. Cuticular wax deposition in growing barley (Hordeum vulgare) leaves commences in relation to the point of emergence of epidermal cells from the sheaths of older leaves. Richardson A; Franke R; Kerstiens G; Jarvis M; Schreiber L; Fricke W Planta; 2005 Oct; 222(3):472-83. PubMed ID: 15940461 [TBL] [Abstract][Full Text] [Related]
7. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Zeisler V; Schreiber L Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347 [TBL] [Abstract][Full Text] [Related]
8. Amphistomy: stomata patterning inferred from 13C content and leaf-side-specific deposition of epicuticular wax. Askanbayeva B; Janová J; Kubásek J; Zeisler-Diehl VV; Schreiber L; Muir CD; Šantrůček J Ann Bot; 2024 Aug; 134(3):437-454. PubMed ID: 38836501 [TBL] [Abstract][Full Text] [Related]
9. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. Zeisler-Diehl V; Müller Y; Schreiber L J Plant Physiol; 2018 Aug; 227():66-74. PubMed ID: 29653782 [TBL] [Abstract][Full Text] [Related]
10. Micromorphological and Chemical Characterization of Drimys winteri Leaf Surfaces: The Secondary Alcohols Forming Epicuticular Wax Crystals Are Accompanied by Alkanediol, Alkanetriol and Ketol Derivatives. Zhang Z; Mistry D; Jetter R Plant Cell Physiol; 2024 Sep; 65(8):1245-1260. PubMed ID: 38757823 [TBL] [Abstract][Full Text] [Related]
11. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Cameron KD; Teece MA; Smart LB Plant Physiol; 2006 Jan; 140(1):176-83. PubMed ID: 16361524 [TBL] [Abstract][Full Text] [Related]
12. Visualization of micromorphology of leaf epicuticular waxes of the rubber tree Ficus elastica by electron microscopy. Kim KW Micron; 2008 Oct; 39(7):976-84. PubMed ID: 18037304 [TBL] [Abstract][Full Text] [Related]
13. Comparative analyses of cuticular waxes on various organs of faba bean (Vicia faba L.). Zhao X; Huang L; Kang L; Jetter R; Yao L; Li Y; Xiao Y; Wang D; Xiao Q; Ni Y; Guo Y Plant Physiol Biochem; 2019 Jun; 139():102-112. PubMed ID: 30884413 [TBL] [Abstract][Full Text] [Related]
14. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. Santrůcek J; Simánová E; Karbulková J; Simková M; Schreiber L J Exp Bot; 2004 Jun; 55(401):1411-22. PubMed ID: 15155780 [TBL] [Abstract][Full Text] [Related]
15. Wheat flag leaf epicuticular wax morphology and composition in response to moderate drought stress are revealed by SEM, FTIR-ATR and synchrotron X-ray spectroscopy. Willick IR; Lahlali R; Vijayan P; Muir D; Karunakaran C; Tanino KK Physiol Plant; 2018 Mar; 162(3):316-332. PubMed ID: 28857201 [TBL] [Abstract][Full Text] [Related]
16. Comparative Transcriptome Analysis Identifies Key Defense Genes and Mechanisms in Mulberry ( Zhang X; Zhu X; Zhang Y; Wu Z; Fan S; Zhang L Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362309 [TBL] [Abstract][Full Text] [Related]
17. Movement and regeneration of epicuticular waxes through plant cuticles. Neinhuis C; Koch K; Barthlott W Planta; 2001 Jul; 213(3):427-34. PubMed ID: 11506366 [TBL] [Abstract][Full Text] [Related]
18. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes. Li Q; Li Y; Zhu L; Xing B; Chen B Sci Rep; 2017 Apr; 7():46235. PubMed ID: 28393859 [TBL] [Abstract][Full Text] [Related]
19. The differences in cocoon and silk qualities among sex-related mulberry and silkworm feeding groups. Bu C; Zheng R; Huang G; Wu J; Liu G; Donald ML; Dong T; Xu X PLoS One; 2022; 17(6):e0270021. PubMed ID: 35771800 [TBL] [Abstract][Full Text] [Related]
20. Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter? Bueno A; Sancho-Knapik D; Gil-Pelegrín E; Leide J; Peguero-Pina JJ; Burghardt M; Riederer M Tree Physiol; 2020 Jun; 40(7):827-840. PubMed ID: 31728539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]