BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20581062)

  • 21. The wrickkened pathways of FGF23, MEPE and PHEX.
    Rowe PS
    Crit Rev Oral Biol Med; 2004 Sep; 15(5):264-81. PubMed ID: 15470265
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clinical and molecular heterogeneity in a large series of patients with hypophosphatemic rickets.
    Capelli S; Donghi V; Maruca K; Vezzoli G; Corbetta S; Brandi ML; Mora S; Weber G
    Bone; 2015 Oct; 79():143-9. PubMed ID: 26051471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular regulation of matrix extracellular phosphoglycoprotein expression by bone morphogenetic protein-2.
    Cho YD; Yoon WJ; Woo KM; Baek JH; Lee G; Cho JY; Ryoo HM
    J Biol Chem; 2009 Sep; 284(37):25230-40. PubMed ID: 19617624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutational analysis of PHEX, FGF23 and DMP1 in a cohort of patients with hypophosphatemic rickets.
    Ruppe MD; Brosnan PG; Au KS; Tran PX; Dominguez BW; Northrup H
    Clin Endocrinol (Oxf); 2011 Mar; 74(3):312-8. PubMed ID: 21050253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutational analysis of patients with FGF23-related hypophosphatemic rickets.
    Kinoshita Y; Saito T; Shimizu Y; Hori M; Taguchi M; Igarashi T; Fukumoto S; Fujita T
    Eur J Endocrinol; 2012 Aug; 167(2):165-72. PubMed ID: 22577109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia.
    Barros NM; Hoac B; Neves RL; Addison WN; Assis DM; Murshed M; Carmona AK; McKee MD
    J Bone Miner Res; 2013 Mar; 28(3):688-99. PubMed ID: 22991293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PHEX mimetic (SPR4-peptide) corrects and improves HYP and wild type mice energy-metabolism.
    Zelenchuk LV; Hedge AM; Rowe PS
    PLoS One; 2014; 9(5):e97326. PubMed ID: 24839967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis.
    Qin C; Baba O; Butler WT
    Crit Rev Oral Biol Med; 2004 Jun; 15(3):126-36. PubMed ID: 15187031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Rickets].
    Yasuda T
    Clin Calcium; 2009 Jan; 19(1):109-16. PubMed ID: 19122271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of the DMP1 C-terminal fragment stimulates FGF23 and exacerbates the hypophosphatemic rickets phenotype in Hyp mice.
    Martin A; David V; Li H; Dai B; Feng JQ; Quarles LD
    Mol Endocrinol; 2012 Nov; 26(11):1883-95. PubMed ID: 22930691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel Phex mutation in a new mouse model of hypophosphatemic rickets.
    Owen C; Chen F; Flenniken AM; Osborne LR; Ichikawa S; Adamson SL; Rossant J; Aubin JE
    J Cell Biochem; 2012 Jul; 113(7):2432-41. PubMed ID: 22573557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of MEPE cleavage by Phex.
    Guo R; Rowe PS; Liu S; Simpson LG; Xiao ZS; Quarles LD
    Biochem Biophys Res Commun; 2002 Sep; 297(1):38-45. PubMed ID: 12220505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impaired mineral quality in dentin in X-linked hypophosphatemia.
    Coyac BR; Falgayrac G; Penel G; Schmitt A; Schinke T; Linglart A; McKee MD; Chaussain C; Bardet C
    Connect Tissue Res; 2018 Dec; 59(sup1):91-96. PubMed ID: 29745817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hypophosphatemic osteosclerosis, hyperostosis, and enthesopathy associated with novel homozygous mutations of DMP1 encoding dentin matrix protein 1 and SPP1 encoding osteopontin: The first digenic SIBLING protein osteopathy?
    Whyte MP; Amalnath SD; McAlister WH; McKee MD; Veis DJ; Huskey M; Duan S; Bijanki VN; Alur S; Mumm S
    Bone; 2020 Mar; 132():115190. PubMed ID: 31843680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A unified model for bone-renal mineral and energy metabolism.
    Rowe PS
    Curr Opin Pharmacol; 2015 Jun; 22():64-71. PubMed ID: 25880364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium‑dependent activation of PHEX, MEPE and DMP1 in osteocytes.
    Donmez BO; Karagur ER; Donmez AC; Choi J; Akkus O
    Mol Med Rep; 2022 Dec; 26(6):. PubMed ID: 36281920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression and distribution of SIBLING proteins in the predentin/dentin and mandible of hyp mice.
    Zhang B; Sun Y; Chen L; Guan C; Guo L; Qin C
    Oral Dis; 2010 Jul; 16(5):453-64. PubMed ID: 20233318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MEPE's diverse effects on mineralization.
    Boskey AL; Chiang P; Fermanis A; Brown J; Taleb H; David V; Rowe PS
    Calcif Tissue Int; 2010 Jan; 86(1):42-6. PubMed ID: 19998030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MEPE has the properties of an osteoblastic phosphatonin and minhibin.
    Rowe PS; Kumagai Y; Gutierrez G; Garrett IR; Blacher R; Rosen D; Cundy J; Navvab S; Chen D; Drezner MK; Quarles LD; Mundy GR
    Bone; 2004 Feb; 34(2):303-19. PubMed ID: 14962809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Updates on rickets and osteomalacia: mechanism and regulation of bone mineralization].
    Matsuo K
    Clin Calcium; 2013 Oct; 23(10):1463-7. PubMed ID: 24076644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.