These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 20581124)
1. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. Böttcher C; Keyzers RA; Boss PK; Davies C J Exp Bot; 2010 Aug; 61(13):3615-25. PubMed ID: 20581124 [TBL] [Abstract][Full Text] [Related]
2. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. Böttcher C; Boss PK; Davies C J Exp Bot; 2011 Aug; 62(12):4267-80. PubMed ID: 21543520 [TBL] [Abstract][Full Text] [Related]
3. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. Böttcher C; Burbidge CA; Boss PK; Davies C BMC Plant Biol; 2013 Dec; 13():222. PubMed ID: 24364881 [TBL] [Abstract][Full Text] [Related]
4. A novel tool for studying auxin-metabolism: the inhibition of grapevine indole-3-acetic acid-amido synthetases by a reaction intermediate analogue. Böttcher C; Dennis EG; Booker GW; Polyak SW; Boss PK; Davies C PLoS One; 2012; 7(5):e37632. PubMed ID: 22649546 [TBL] [Abstract][Full Text] [Related]
5. A ripening-induced SlGH3-2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.). Sravankumar T; Akash ; Naik N; Kumar R Plant Mol Biol; 2018 Nov; 98(4-5):455-469. PubMed ID: 30367324 [TBL] [Abstract][Full Text] [Related]
6. Grape berry ripening delay induced by a pre-véraison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes. Ziliotto F; Corso M; Rizzini FM; Rasori A; Botton A; Bonghi C BMC Plant Biol; 2012 Oct; 12():185. PubMed ID: 23046684 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis. Peat TS; Böttcher C; Newman J; Lucent D; Cowieson N; Davies C Plant Cell; 2012 Nov; 24(11):4525-38. PubMed ID: 23136372 [TBL] [Abstract][Full Text] [Related]
8. Auxin treatment of grapevine (Vitis vinifera L.) berries delays ripening onset by inhibiting cell expansion. Dal Santo S; Tucker MR; Tan HT; Burbidge CA; Fasoli M; Böttcher C; Boss PK; Pezzotti M; Davies C Plant Mol Biol; 2020 May; 103(1-2):91-111. PubMed ID: 32043226 [TBL] [Abstract][Full Text] [Related]
9. Timing of ripening initiation in grape berries and its relationship to seed content and pericarp auxin levels. Gouthu S; Deluc LG BMC Plant Biol; 2015 Feb; 15():46. PubMed ID: 25848949 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. Pilati S; Perazzolli M; Malossini A; Cestaro A; Demattè L; Fontana P; Dal Ri A; Viola R; Velasco R; Moser C BMC Genomics; 2007 Nov; 8():428. PubMed ID: 18034875 [TBL] [Abstract][Full Text] [Related]
11. Preference of Arabidopsis thaliana GH3.5 acyl amido synthetase for growth versus defense hormone acyl substrates is dictated by concentration of amino acid substrate aspartate. Mackelprang R; Okrent RA; Wildermuth MC Phytochemistry; 2017 Nov; 143():19-28. PubMed ID: 28743075 [TBL] [Abstract][Full Text] [Related]
12. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Symons GM; Davies C; Shavrukov Y; Dry IB; Reid JB; Thomas MR Plant Physiol; 2006 Jan; 140(1):150-8. PubMed ID: 16361521 [TBL] [Abstract][Full Text] [Related]
13. Regulation of polar auxin transport in grapevine fruitlets (Vitis vinifera L.) and the proposed role of auxin homeostasis during fruit abscission. Kühn N; Serrano A; Abello C; Arce A; Espinoza C; Gouthu S; Deluc L; Arce-Johnson P BMC Plant Biol; 2016 Oct; 16(1):234. PubMed ID: 27793088 [TBL] [Abstract][Full Text] [Related]
14. Combined Metabolite and Transcriptome Profiling Reveals the Norisoprenoid Responses in Grape Berries to Abscisic Acid and Synthetic Auxin. He L; Meng N; Castellarin SD; Wang Y; Sun Q; Li XY; Dong ZG; Tang XP; Duan CQ; Pan QH Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33572582 [TBL] [Abstract][Full Text] [Related]
15. Pea GH3 acyl acid amidosynthetase conjugates IAA to proteins in immature seeds of Pisum sativum L. - A new perspective on formation of high-molecular weight conjugates of auxin. Ostrowski M; Ciarkowska A J Plant Physiol; 2021 Jan; 256():153312. PubMed ID: 33161181 [TBL] [Abstract][Full Text] [Related]
16. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. Su L; Diretto G; Purgatto E; Danoun S; Zouine M; Li Z; Roustan JP; Bouzayen M; Giuliano G; Chervin C BMC Plant Biol; 2015 May; 15():114. PubMed ID: 25953041 [TBL] [Abstract][Full Text] [Related]
17. Abscisic acid, sucrose, and auxin coordinately regulate berry ripening process of the Fujiminori grape. Jia H; Xie Z; Wang C; Shangguan L; Qian N; Cui M; Liu Z; Zheng T; Wang M; Fang J Funct Integr Genomics; 2017 Jul; 17(4):441-457. PubMed ID: 28224250 [TBL] [Abstract][Full Text] [Related]
18. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697 [TBL] [Abstract][Full Text] [Related]
19. Cloning and biochemical characterization of indole-3-acetic acid-amino acid synthetase PsGH3 from pea. Ostrowski M; Mierek-Adamska A; Porowińska D; Goc A; Jakubowska A Plant Physiol Biochem; 2016 Oct; 107():9-20. PubMed ID: 27235647 [TBL] [Abstract][Full Text] [Related]
20. Polyamines Regulate Strawberry Fruit Ripening by Abscisic Acid, Auxin, and Ethylene. Guo J; Wang S; Yu X; Dong R; Li Y; Mei X; Shen Y Plant Physiol; 2018 May; 177(1):339-351. PubMed ID: 29523717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]