These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 20581271)
1. Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. Hiltpold I; Baroni M; Toepfer S; Kuhlmann U; Turlings TC J Exp Biol; 2010 Jul; 213(Pt 14):2417-23. PubMed ID: 20581271 [TBL] [Abstract][Full Text] [Related]
2. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Degenhardt J; Hiltpold I; Köllner TG; Frey M; Gierl A; Gershenzon J; Hibbard BE; Ellersieck MR; Turlings TC Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13213-8. PubMed ID: 19666594 [TBL] [Abstract][Full Text] [Related]
3. Selective breeding of entomopathogenic nematodes for enhanced attraction to a root signal did not reduce their establishment or persistence after field release. Hiltpold I; Baroni M; Toepfer S; Kuhlmann U; Turlings TC Plant Signal Behav; 2010 Nov; 5(11):1450-2. PubMed ID: 21051943 [TBL] [Abstract][Full Text] [Related]
5. Attraction of Heterorhabditis sp. toward synthetic (E)-beta-cariophyllene, a plant SOS signal emitted by maize on feeding by larvae of Diabrotica virgifera virgifera. Anbesse S; Ehlers RU Commun Agric Appl Biol Sci; 2010; 75(3):455-8. PubMed ID: 21539265 [TBL] [Abstract][Full Text] [Related]
6. An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds. Laznik Z; Trdan S Exp Parasitol; 2013 Jul; 134(3):349-55. PubMed ID: 23562713 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the Field Efficacy of Modic Š; Žigon P; Kolmanič A; Trdan S; Razinger J Insects; 2020 Mar; 11(3):. PubMed ID: 32213940 [TBL] [Abstract][Full Text] [Related]
8. Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field. Robert CA; Erb M; Hiltpold I; Hibbard BE; Gaillard MD; Bilat J; Degenhardt J; Cambet-Petit-Jean X; Turlings TC; Zwahlen C Plant Biotechnol J; 2013 Jun; 11(5):628-39. PubMed ID: 23425633 [TBL] [Abstract][Full Text] [Related]
9. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Bruno P; Machado RAR; Glauser G; Köhler A; Campos-Herrera R; Bernal J; Toepfer S; Erb M; Robert CAM; Arce CCM; Turlings TCJ Sci Rep; 2020 May; 10(1):8257. PubMed ID: 32427834 [TBL] [Abstract][Full Text] [Related]
10. Systemic root signalling in a belowground, volatile-mediated tritrophic interaction. Hiltpold I; Erb M; Robert CA; Turlings TC Plant Cell Environ; 2011 Aug; 34(8):1267-75. PubMed ID: 21477121 [TBL] [Abstract][Full Text] [Related]
11. Protecting maize from rootworm damage with the combined application of arbuscular mycorrhizal fungi, Pseudomonas bacteria and entomopathogenic nematodes. Jaffuel G; Imperiali N; Shelby K; Campos-Herrera R; Geisert R; Maurhofer M; Loper J; Keel C; Turlings TCJ; Hibbard BE Sci Rep; 2019 Feb; 9(1):3127. PubMed ID: 30816250 [TBL] [Abstract][Full Text] [Related]
12. Highly Potent Extracts from Pea (Pisum sativum) and Maize (Zea mays) Roots Can Be Used to Induce Quiescence in Entomopathogenic Nematodes. Jaffuel G; Hiltpold I; Turlings TC J Chem Ecol; 2015 Sep; 41(9):793-800. PubMed ID: 26364294 [TBL] [Abstract][Full Text] [Related]
13. Differential Response of a Local Population of Entomopathogenic Nematodes to Non-Native Herbivore Induced Plant Volatiles (HIPV) in the Laboratory and Field. Rivera MJ; Rodriguez-Saona C; Alborn HT; Koppenhöfer AM J Chem Ecol; 2016 Dec; 42(12):1259-1264. PubMed ID: 27848155 [TBL] [Abstract][Full Text] [Related]
14. Western corn rootworm and Bt maize: challenges of pest resistance in the field. Gassmann AJ; Petzold-Maxwell JL; Keweshan RS; Dunbar MW GM Crops Food; 2012; 3(3):235-44. PubMed ID: 22688688 [TBL] [Abstract][Full Text] [Related]
15. Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field. Gassmann AJ J Invertebr Pathol; 2012 Jul; 110(3):287-93. PubMed ID: 22537837 [TBL] [Abstract][Full Text] [Related]
16. A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Köllner TG; Held M; Lenk C; Hiltpold I; Turlings TC; Gershenzon J; Degenhardt J Plant Cell; 2008 Feb; 20(2):482-94. PubMed ID: 18296628 [TBL] [Abstract][Full Text] [Related]
17. Bioturbation by endogeic earthworms facilitates entomopathogenic nematode movement toward herbivore-damaged maize roots. Fattore S; Xiao Z; Godschalx AL; Röder G; Turlings TCJ; Le Bayon RC; Rasmann S Sci Rep; 2020 Dec; 10(1):21316. PubMed ID: 33277609 [TBL] [Abstract][Full Text] [Related]
18. The role of root architecture in foraging behavior of entomopathogenic nematodes. Demarta L; Hibbard BE; Bohn MO; Hiltpold I J Invertebr Pathol; 2014 Oct; 122():32-9. PubMed ID: 25149039 [TBL] [Abstract][Full Text] [Related]
19. Attraction of four entomopathogenic nematodes to four white grub species. Koppenhöfer AM; Fuzy EM J Invertebr Pathol; 2008 Oct; 99(2):227-34. PubMed ID: 18597774 [TBL] [Abstract][Full Text] [Related]
20. Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects. von Mérey G; Veyrat N; Mahuku G; Valdez RL; Turlings TC; D'Alessandro M Phytochemistry; 2011 Oct; 72(14-15):1838-47. PubMed ID: 21658734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]