BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 20581303)

  • 1. RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice.
    Je BI; Piao HL; Park SJ; Park SH; Kim CM; Xuan YH; Park SH; Huang J; Do Choi Y; An G; Wong HL; Fujioka S; Kim MC; Shimamoto K; Han CD
    Plant Cell; 2010 Jun; 22(6):1777-91. PubMed ID: 20581303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brassinosteroid homeostasis via coordinate regulation of signaling and synthetic pathways.
    Je BI; Han CD
    Plant Signal Behav; 2010 Nov; 5(11):1440-1. PubMed ID: 21057193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Related to ABI3/VP1-Like 1 (RAVL1) regulates brassinosteroid-mediated activation of AMT1;2 in rice (Oryza sativa).
    Xuan YH; Duan FY; Je BI; Kim CM; Li TY; Liu JM; Park SJ; Cho JH; Kim TH; von Wiren N; Han CD
    J Exp Bot; 2017 Jan; 68(3):727-737. PubMed ID: 28035023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice.
    Tanaka A; Nakagawa H; Tomita C; Shimatani Z; Ohtake M; Nomura T; Jiang CJ; Dubouzet JG; Kikuchi S; Sekimoto H; Yokota T; Asami T; Kamakura T; Mori M
    Plant Physiol; 2009 Oct; 151(2):669-80. PubMed ID: 19648232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAVL1 Activates Brassinosteroids and Ethylene Signaling to Modulate Response to Sheath Blight Disease in Rice.
    Yuan P; Zhang C; Wang ZY; Zhu XF; Xuan YH
    Phytopathology; 2018 Sep; 108(9):1104-1113. PubMed ID: 29767552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OsBZR1 turnover mediated by OsSK22-regulated U-box E3 ligase OsPUB24 in rice BR response.
    Min HJ; Cui LH; Oh TR; Kim JH; Kim TW; Kim WT
    Plant J; 2019 Aug; 99(3):426-438. PubMed ID: 30920691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic rice plants ectopically expressing AtBAK1 are semi-dwarfed and hypersensitive to 24-epibrassinolide.
    Wang L; Xu YY; Li J; Powell RA; Xu ZH; Chong K
    J Plant Physiol; 2007 May; 164(5):655-64. PubMed ID: 17027118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length.
    Tanabe S; Ashikari M; Fujioka S; Takatsuto S; Yoshida S; Yano M; Yoshimura A; Kitano H; Matsuoka M; Fujisawa Y; Kato H; Iwasaki Y
    Plant Cell; 2005 Mar; 17(3):776-90. PubMed ID: 15705958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA Interference Knockdown of BRASSINOSTEROID INSENSITIVE1 in Maize Reveals Novel Functions for Brassinosteroid Signaling in Controlling Plant Architecture.
    Kir G; Ye H; Nelissen H; Neelakandan AK; Kusnandar AS; Luo A; Inzé D; Sylvester AW; Yin Y; Becraft PW
    Plant Physiol; 2015 Sep; 169(1):826-39. PubMed ID: 26162429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors.
    Kim TW; Guan S; Sun Y; Deng Z; Tang W; Shang JX; Sun Y; Burlingame AL; Wang ZY
    Nat Cell Biol; 2009 Oct; 11(10):1254-60. PubMed ID: 19734888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RAVL1, an upstream component of brassinosteroid signalling and biosynthesis, regulates ethylene signalling via activation of EIL1 in rice.
    Zhu XF; Yuan P; Zhang C; Li TY; Xuan YH
    Plant Biotechnol J; 2018 Aug; 16(8):1399-1401. PubMed ID: 29604166
    [No Abstract]   [Full Text] [Related]  

  • 12. Brassinosteroid-mediated regulation of agronomic traits in rice.
    Zhang C; Bai MY; Chong K
    Plant Cell Rep; 2014 May; 33(5):683-96. PubMed ID: 24667992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of the alpha subunit of rice heterotrimeric G protein in brassinosteroid signaling.
    Oki K; Inaba N; Kitagawa K; Fujioka S; Kitano H; Fujisawa Y; Kato H; Iwasaki Y
    Plant Cell Physiol; 2009 Jan; 50(1):161-72. PubMed ID: 19036785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways.
    Ye H; Li L; Yin Y
    J Integr Plant Biol; 2011 Jun; 53(6):455-68. PubMed ID: 21554539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The brassinosteroid signal transduction pathway.
    Wang ZY; Wang Q; Chong K; Wang F; Wang L; Bai M; Jia C
    Cell Res; 2006 May; 16(5):427-34. PubMed ID: 16699538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological Analysis of Brassinosteroid Responses and Sensitivity in Rice.
    Tong H; Chu C
    Methods Mol Biol; 2017; 1564():23-29. PubMed ID: 28124243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brassinosteroid signaling in plants.
    Müssig C; Altmann T
    Trends Endocrinol Metab; 2001 Nov; 12(9):398-402. PubMed ID: 11595541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism.
    Tanaka K; Asami T; Yoshida S; Nakamura Y; Matsuo T; Okamoto S
    Plant Physiol; 2005 Jun; 138(2):1117-25. PubMed ID: 15908602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CESTA, a positive regulator of brassinosteroid biosynthesis.
    Poppenberger B; Rozhon W; Khan M; Husar S; Adam G; Luschnig C; Fujioka S; Sieberer T
    EMBO J; 2011 Mar; 30(6):1149-61. PubMed ID: 21336258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis.
    Sreeramulu S; Mostizky Y; Sunitha S; Shani E; Nahum H; Salomon D; Hayun LB; Gruetter C; Rauh D; Ori N; Sessa G
    Plant J; 2013 Jun; 74(6):905-19. PubMed ID: 23496207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.