BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 20581474)

  • 1. Unique gating properties of C. elegans ClC anion channel splice variants are determined by altered CBS domain conformation and the R-helix linker.
    Dave S; Sheehan JH; Meiler J; Strange K
    Channels (Austin); 2010; 4(4):289-301. PubMed ID: 20581474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory Conformational Coupling between CLC Anion Channel Membrane and Cytoplasmic Domains.
    Yamada T; Strange K
    Biophys J; 2016 Nov; 111(9):1887-1896. PubMed ID: 27806270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel.
    Yamada T; Krzeminski M; Bozoky Z; Forman-Kay JD; Strange K
    Biophys J; 2016 Nov; 111(9):1876-1886. PubMed ID: 27806269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carboxy terminus splice variation alters ClC channel gating and extracellular cysteine reactivity.
    He L; Denton J; Nehrke K; Strange K
    Biophys J; 2006 May; 90(10):3570-81. PubMed ID: 16500974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CLC anion channel regulatory phosphorylation and conserved signal transduction domains.
    Miyazaki H; Yamada T; Parton A; Morrison R; Kim S; Beth AH; Strange K
    Biophys J; 2012 Oct; 103(8):1706-18. PubMed ID: 23083714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered gating and regulation of a carboxy-terminal ClC channel mutant expressed in the Caenorhabditis elegans oocyte.
    Denton J; Nehrke K; Yin X; Beld AM; Strange K
    Am J Physiol Cell Physiol; 2006 Apr; 290(4):C1109-18. PubMed ID: 16306126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of regulatory phosphorylation sites in a cell volume- and Ste20 kinase-dependent ClC anion channel.
    Falin RA; Morrison R; Ham AJ; Strange K
    J Gen Physiol; 2009 Jan; 133(1):29-42. PubMed ID: 19088383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative splicing of N- and C-termini of a C. elegans ClC channel alters gating and sensitivity to external Cl- and H+.
    Denton J; Nehrke K; Rutledge E; Morrison R; Strange K
    J Physiol; 2004 Feb; 555(Pt 1):97-114. PubMed ID: 14565992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation of a CLC anion channel by SPAK kinase ortholog-mediated multisite phosphorylation.
    Miyazaki H; Strange K
    Am J Physiol Cell Physiol; 2012 Jun; 302(12):C1702-12. PubMed ID: 22357738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory phosphorylation induces extracellular conformational changes in a CLC anion channel.
    Yamada T; Bhate MP; Strange K
    Biophys J; 2013 May; 104(9):1893-904. PubMed ID: 23663832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain.
    Yusef YR; Zúñiga L; Catalán M; Niemeyer MI; Cid LP; Sepúlveda FV
    J Physiol; 2006 Apr; 572(Pt 1):173-81. PubMed ID: 16469788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional and structural conservation of CBS domains from CLC chloride channels.
    Estévez R; Pusch M; Ferrer-Costa C; Orozco M; Jentsch TJ
    J Physiol; 2004 Jun; 557(Pt 2):363-78. PubMed ID: 14724190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1.
    Ludwig CF; Ullrich F; Leisle L; Stauber T; Jentsch TJ
    J Biol Chem; 2013 Oct; 288(40):28611-9. PubMed ID: 23983121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional complementation of truncated human skeletal-muscle chloride channel (hClC-1) using carboxyl tail fragments.
    Wu W; Rychkov GY; Hughes BP; Bretag AH
    Biochem J; 2006 Apr; 395(1):89-97. PubMed ID: 16321142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels.
    Bennetts B; Rychkov GY; Ng HL; Morton CJ; Stapleton D; Parker MW; Cromer BA
    J Biol Chem; 2005 Sep; 280(37):32452-8. PubMed ID: 16027167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the carboxyl terminus in ClC chloride channel function.
    Hebeisen S; Biela A; Giese B; Müller-Newen G; Hidalgo P; Fahlke C
    J Biol Chem; 2004 Mar; 279(13):13140-7. PubMed ID: 14718533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of the cytoplasmic domain of the chloride channel ClC-Ka reveals a conserved interaction interface.
    Markovic S; Dutzler R
    Structure; 2007 Jun; 15(6):715-25. PubMed ID: 17562318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of ATP to the CBS domains in the C-terminal region of CLC-1.
    Tseng PY; Yu WP; Liu HY; Zhang XD; Zou X; Chen TY
    J Gen Physiol; 2011 Apr; 137(4):357-68. PubMed ID: 21444658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two splice variants derived from a Drosophila melanogaster candidate ClC gene generate ClC-2-type Cl- channels.
    Flores CA; Niemeyer MI; Sepúlveda FV; Cid LP
    Mol Membr Biol; 2006; 23(2):149-56. PubMed ID: 16754358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
    Garcia-Olivares J; Alekov A; Boroumand MR; Begemann B; Hidalgo P; Fahlke C
    J Physiol; 2008 Nov; 586(22):5325-36. PubMed ID: 18801843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.