These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 20582162)
1. Image-based models of cardiac structure in health and disease. Vadakkumpadan F; Arevalo H; Prassl AJ; Chen J; Kickinger F; Kohl P; Plank G; Trayanova N Wiley Interdiscip Rev Syst Biol Med; 2010; 2(4):489-506. PubMed ID: 20582162 [TBL] [Abstract][Full Text] [Related]
2. Image-based estimation of ventricular fiber orientations for personalized modeling of cardiac electrophysiology. Vadakkumpadan F; Arevalo H; Ceritoglu C; Miller M; Trayanova N IEEE Trans Med Imaging; 2012 May; 31(5):1051-60. PubMed ID: 22271833 [TBL] [Abstract][Full Text] [Related]
3. Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies. Vadakkumpadan F; Rantner LJ; Tice B; Boyle P; Prassl AJ; Vigmond E; Plank G; Trayanova N J Electrocardiol; 2009; 42(2):157.e1-10. PubMed ID: 19181330 [TBL] [Abstract][Full Text] [Related]
4. Novel atlas of fiber directions built from ex-vivo diffusion tensor images of porcine hearts. Mojica M; Pop M; Sermesant M; Ebrahimi M Comput Methods Programs Biomed; 2020 Apr; 187():105200. PubMed ID: 31830700 [TBL] [Abstract][Full Text] [Related]
5. Models of cardiac electromechanics based on individual hearts imaging data: image-based electromechanical models of the heart. Gurev V; Lee T; Constantino J; Arevalo H; Trayanova NA Biomech Model Mechanobiol; 2011 Jun; 10(3):295-306. PubMed ID: 20589408 [TBL] [Abstract][Full Text] [Related]
6. Patient-specific modeling of the heart: estimation of ventricular fiber orientations. Vadakkumpadan F; Arevalo H; Trayanova NA J Vis Exp; 2013 Jan; (71):. PubMed ID: 23329052 [TBL] [Abstract][Full Text] [Related]
7. Imaging-based integrative models of the heart: closing the loop between experiment and simulation. Winslow RL; Helm P; Baumgartner W; Peddi S; Ratnanather T; McVeigh E; Miller MI Novartis Found Symp; 2002; 247():129-41; discussion 141-3, 144-50, 244-52. PubMed ID: 12539953 [TBL] [Abstract][Full Text] [Related]
8. Predictive modeling of cardiac fiber orientation using the Knutsson mapping. Lekadir K; Ghafaryasl B; Muñoz-Moreno E; Butakoff C; Hoogendoorn C; Frangi AF Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):50-7. PubMed ID: 21995012 [TBL] [Abstract][Full Text] [Related]
9. An efficient finite element approach for modeling fibrotic clefts in the heart. Costa CM; Campos FO; Prassl AJ; dos Santos RW; Sánchez-Quintana D; Ahammer H; Hofer E; Plank G IEEE Trans Biomed Eng; 2014 Mar; 61(3):900-10. PubMed ID: 24557691 [TBL] [Abstract][Full Text] [Related]
10. A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of canine hearts. Peyrat JM; Sermesant M; Pennec X; Delingette H; Xu C; McVeigh ER; Ayache N IEEE Trans Med Imaging; 2007 Nov; 26(11):1500-14. PubMed ID: 18041265 [TBL] [Abstract][Full Text] [Related]
11. Simulating cardiac ultrasound image based on MR diffusion tensor imaging. Qin X; Wang S; Shen M; Lu G; Zhang X; Wagner MB; Fei B Med Phys; 2015 Sep; 42(9):5144-56. PubMed ID: 26328966 [TBL] [Abstract][Full Text] [Related]
12. Finite-Element Extrapolation of Myocardial Structure Alterations Across the Cardiac Cycle in Rats. David Gomez A; Bull DA; Hsu EW J Biomech Eng; 2015 Oct; 137(10):101010. PubMed ID: 26299478 [TBL] [Abstract][Full Text] [Related]
13. Cardiac diffusion tensor imaging based on compressed sensing using joint sparsity and low-rank approximation. Huang J; Wang L; Chu C; Zhang Y; Liu W; Zhu Y Technol Health Care; 2016 Apr; 24 Suppl 2():S593-9. PubMed ID: 27163322 [TBL] [Abstract][Full Text] [Related]
14. MR investigation of the coupling between myocardial fiber architecture and cardiac contraction. Wu Y; Wu EX Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4395-8. PubMed ID: 19964360 [TBL] [Abstract][Full Text] [Related]
16. A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Bayer JD; Blake RC; Plank G; Trayanova NA Ann Biomed Eng; 2012 Oct; 40(10):2243-54. PubMed ID: 22648575 [TBL] [Abstract][Full Text] [Related]
17. A curvature-based approach for left ventricular shape analysis from cardiac magnetic resonance imaging. Yeo SY; Zhong L; Su Y; Tan RS; Ghista DN Med Biol Eng Comput; 2009 Mar; 47(3):313-22. PubMed ID: 18853215 [TBL] [Abstract][Full Text] [Related]
18. Studying Dynamic Myofiber Aggregate Reorientation in Dilated Cardiomyopathy Using In Vivo Magnetic Resonance Diffusion Tensor Imaging. von Deuster C; Sammut E; Asner L; Nordsletten D; Lamata P; Stoeck CT; Kozerke S; Razavi R Circ Cardiovasc Imaging; 2016 Oct; 9(10):e005018. PubMed ID: 27729361 [TBL] [Abstract][Full Text] [Related]
19. Quantitative comparison of human myocardial fiber orientations derived from DTI and polarized light imaging. Yang F; Zhu YM; Michalowicz G; Jouk PS; Fanton L; Viallon M; Clarysse P; Croisille P; Usson Y Phys Med Biol; 2018 Oct; 63(21):215003. PubMed ID: 30265658 [TBL] [Abstract][Full Text] [Related]
20. Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models. Veress AI; Segars WP; Weiss JA; Tsui BM; Gullberg GT IEEE Trans Med Imaging; 2006 Dec; 25(12):1604-16. PubMed ID: 17167995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]